Publications of Prof. Dr. Helmut Harbrecht

Recent Material

  1. H. Harbrecht and R. von Rickenbach. On Sobolev and Besov spaces with hybrid regularity. arXiv:2411.04837, 2024.

  2. H. Harbrecht, R. Kempf, and M. Multerer. On quasi-localized dual pairs in reproducing kernel Hilbert spaces. arXiv:22408.11389, 2024.

  3. M. Dambrine, C. Geiersbach, and H. Harbrecht. Two-norm discrepancy and convergence of the stochastic gradient method with application to shape optimization. arXiv:2408.05021, 2024.

  4. M. Dambrine, G. Gargantini, H. Harbrecht, and V. Karnaev. Shape optimization of a thermoelastic body under thermal uncertainties. Preprint 2024-07, Fachbereich Mathematik, Universität Basel, Switzerland, 2024.

  5. E. Gajendran, H. Harbrecht, and R. von Rickenbach. Hierarchical tensor approximation of high-dimensional functions of isotropic and anisotropic Sobolev smoothness. Preprint 2024-02, Fachbereich Mathematik, Universität Basel, Switzerland, 2024.

  6. H. Harbrecht, C. Schwab, and M. Zank. Wavelet compressed, modified Hilbert transform in the space-time discretization of the heat equation. arXiv:2402.10346, 2024.

  7. H. Harbrecht, M. Multerer, and J. Quizi. The dimension weighted fast multipole method for scattered data approximation. arXiv:2402.09531, 2024.

  8. H. Harbrecht and I. Kalmykov. Sparse grid approximation of the Riccati equation. Preprint 2024-01, Fachbereich Mathematik, Universität Basel, Switzerland, 2024.

  9. M. Dambrine, G. Gargantini, H. Harbrecht, and J. Maynadier. Shape optimization under constraints on the probability of a quadratic functional to exceed a given threshold. Preprint 2023-13, Fachbereich Mathematik, Universität Basel, Switzerland, 2023.

  10. C. Bürli, H. Harbrecht, P. Odermatt, S. Sayasone, and N. Chitnis. Age dependency in the transmission dynamics of the liver fluke, Opisthorchis viverrini and the effectiveness of interventions. Preprint 2019-11, Fachbereich Mathematik, Universität Basel, Switzerland, 2019.

  11. H. Harbrecht and P. Zaspel. A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters. Preprint 2018-11, Fachbereich Mathematik, Universität Basel, Switzerland, 2018.

Books

  1. H. Harbrecht and M. Multerer. Algorithmische Mathematik: Graphen, Numerik und Probabilistik. Springer Spektrum, Berlin-Heidelberg, 2022.

  2. G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher, S. Ulbrich. Trends in PDE Constrained Optimization. International Series of Numerical Mathematics, Vol. 165, Birkhäuser, Basel, 2014.

Refereed Articles in Books and Journals

  1. J. Dölz, H. Harbrecht, and M. Multerer. Solving acoustic scattering problems by the isogeometric boundary element method. arXiv:2306.11324, 2023 (to appear in Eng. Comput.).

  2. H. Harbrecht, L. Herrmann, K. Kirchner, and C. Schwab. Multilevel approximation of Gaussian random fields: Covariance compression, estimation and spatial prediction. Adv. Comput. Math., 50(5):101, 2024.

  3. H. Harbrecht, M. Multerer, O. Schenk, and C. Schwab. Multiresolution kernel matrix algebra. Numer. Math., 156(3):1085–1114, 2024.

  4. H. Harbrecht and R. von Rickenbach. Compression of boundary integral operators discretized by anisotropic wavelet bases. Numer. Math., 156(3):853–899, 2024.

  5. H. Harbrecht, V. Karnaev, and M. Schmidlin. Quantifying domain uncertainty in linear elasticity. SIAM/ASA J. Uncertain. Quantif., 12(2):503–523, 2024.

  6. D. Baroli, H. Harbrecht, and M. Multerer. Samplet basis pursuit: Multiresolution scattered data approximation with sparsity constraints. IEEE Trans. Sign. Proc., 72:1813–1823, 2024.

  7. H. Harbrecht, M. Schmidlin, and C. Schwab. The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs. Math. Mod. Meth. Appl. Sci., 34(5):881–917, 2024.

  8. L. Kamber, C. Bürli, H. Harbrecht, P. Odermatt, S. Sayasone, and N. Chitnis. Capturing heterogeneity in Opisthorchis viverrini epidemiology and control. PLoS Negl. Trop. Dis., 18(2):e0011362, 2024.

  9. H. Hakula, H. Harbrecht, V. Kaarnioja, F.Y. Kuo, and I.H. Sloan. Uncertainty quantification for random domains using periodic random variables. Numer. Math., 156(1):273–317, 2024.

  10. L.N. Felber, H. Harbrecht, and M. Schmidlin. Identification of sparsely representable diffusion parameters in elliptic problems. SIAM J. Imaging Sci., 17:1:61–90, 2024.

  11. S. Ben Bader, H. Harbrecht, R. Krause, M. Multerer, A. Quaglino, and M. Schmidlin. Space-time multilevel quadrature methods and their application for cardiac electrophysiology. SIAM/ASA J. Uncertain. Quantif., 11(4):1329–1356, 2023.

  12. M. Fallahpour and H. Harbrecht. Shape optimization for composite materials in linear elasticity. Optim. Eng., 24(3):2115–2143, 2023.

  13. M. Griebel, H. Harbrecht, and R. Schneider. Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness. Math. Comput., 92:1729–1746, 2023.

  14. M. Dambrine, H. Harbrecht, and B. Puig. Bernoulli free boundary problems under uncertainty: the convex case. Comput. Methods Appl. Math., 23(2):333–352, 2023.

  15. M. Griebel and H. Harbrecht. Analysis of tensor approximation schemes for continuous functions. Found. Comput. Math., 23(1):219–240, 2023.

  16. H. Harbrecht and M. Schmidlin. Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM. Stoch. Partial Differ. Equ. Anal. Comput., 10:1619–1650, 2022.

  17. H. Harbrecht and M. Multerer. Samplets: Construction and scattered data compression. J. Comput. Phys., 471:111616, 2022.

  18. S. Dahlke, H. Harbrecht, and T.M. Surowiec. A wavelet-based approach for the optimal control of non-local operator equations. SIAM J. Sci. Comput., 44(4):A2691–A2708, 2022.

  19. R. Brügger, H. Harbrecht, and J. Tausch. Boundary integral operators for the heat equation in time-dependent domains. Integr. Equ. Oper. Theory, 94:10, 2022.

  20. R. Brügger and H. Harbrecht. On the reformulation of the classical Stefan problem as a shape optimization problem. SIAM J. Control Optim., 60(1):310–329, 2022.

  21. H. Harbrecht, M. Multerer, and R. von Rickenbach. Isogeometric shape optimization of periodic structures in three dimensions. Comput. Methods Appl. Mech. Engrg., 391:114552, 2022.

  22. J. Dölz, H. Harbrecht, C. Jerez-Hanckes, and M.D. Multerer. Isogeometric multilevel quadrature for forward and inverse random acoustic scattering. Comput. Methods Appl. Mech. Engrg., 388:114242, 2022.

  23. H. Harbrecht and I. Kalmykov. Sparse grid approximation of the Riccati operator for closed loop parabolic control problems with Dirichlet boundary control. SIAM J. Control Optim., 59(6):4538–4562, 2021.

  24. H. Harbrecht, D. Tröndle, and M. Zimmermann. Approximating solution spaces as a product of polygons. Struct. Multidiscip. Optim., 64(4):2225–2242, 2021.

  25. R. Brügger, H. Harbrecht, and J. Tausch. On the numerical solution of a time-dependent shape optimization problem for the heat equation. SIAM J. Control Optim., 59(2):931–953, 2021.

  26. H. Harbrecht, J.D. Jakeman, and P. Zaspel. Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration. Commun. Comput. Phys., 29:1152–1185, 2021.

  27. H. Harbrecht and M.D. Multerer. A fast direct solver for nonlocal operators in wavelet coordinates. J. Comput. Phys., 428:110056, 2021.

  28. R. Brügger, R. Croce, and H. Harbrecht. Solving a Bernoulli type free boundary problem with random diffusion. ESAIM Control Optim. Calc. Var., 26:56, 2020.

  29. M. Dambrine and H. Harbrecht. Shape optimization for composite materials and scaffolds. Multiscale Model. Sim., 18(2):1136–1152, 2020.

  30. J. Dölz, H. Harbrecht, S. Kurz, M.D. Multerer, S. Schöps, and F. Wolf. Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation. SoftwareX, 11:100476, 2020.

  31. M. Griebel, H. Harbrecht, and M.D. Multerer. Multilevel quadrature for elliptic parametric partial differential equations in case of polygonal approximations of curved domains. SIAM J. Numer. Anal., 58(1):684–705, 2020.

  32. H. Harbrecht and M. Schmidlin. Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion. Stoch. Partial Differ. Equ. Anal. Comput., 8(1):54–81, 2020.

  33. M. Dambrine, H. Harbrecht, and B. Puig. Incorporating knowledge on the measurement noise in electrical impedance tomography. ESAIM Control Optim. Calc. Var., 25:84, 2019.

  34. M. Griebel and H. Harbrecht. Singular value decomposition versus sparse grids. Refined complexity estimates. IMA J. Numer. Anal., 39(4):1652–1671, 2019.

  35. K. Eppler, H. Harbrecht, S. Schlenkrich, and A. Walther. Computation of shape derivatives in electromagnetic shaping by algorithmic differentiation. J. Math. Study, 52(3):227–243, 2019.

  36. H. Harbrecht, D. Tröndle, and M. Zimmermann. A sampling-based optimization algorithm for solution spaces with pair-wise coupled design variables. Struct. Multidiscip. Optim., 60(2):501–512, 2019.

  37. H. Harbrecht and M. Moor. Wavelet boundary element methods. Adaptivity and goal-oriented error estimation. In T. Apel et al., editors, Advanced Finite Element Methods with Applications, volume 128 of Lecture Notes in Computational Science and Engineering, pages 143–164, Springer Nature, Switzerland, 2019.

  38. J. Dölz and T. Gerig, M. Lüthi, H. Harbrecht and T. Vetter. Error-controlled model approximation for Gaussian process morphable models. J. Math. Imaging Vision, 61(4):443–457, 2019.

  39. P. Balazs and H. Harbrecht. Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing. Numer. Funct. Anal. Optim., 40(1):65–84, 2019.

  40. P. Zaspel, B. Huang, H. Harbrecht, and O.A. von Lilienfeld. Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited. J. Chem. Theory Comput., 15(3):1546–1559, 2019.

  41. H. Harbrecht and P. Zaspel. On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems. J. Sci. Comput., 78(2):1272–1290, 2019.

  42. F. Caubet, M. Dambrine, and H. Harbrecht. A new method for the data completion problem and application to obstacle detection. SIAM J. Appl. Math., 79(1):415–435, 2019.

  43. J. Dölz, H. Harbrecht, and M.D. Multerer. On the best approximation of the hierarchical matrix product. SIAM J. Matrix Anal. Appl., 40(1):147–174, 2019.

  44. H. Harbrecht, N. Ilić, and M.D. Multerer. Rapid computation of far-field statistics for random obstacle scattering. Eng. Anal. Bound. Elem., 101:243–251, 2019.

  45. M. Bugeanu and H. Harbrecht. Parametric representation of molecular surfaces. Int. J. Quantum Chem., 119:e25695, 2019.

  46. C. Bürli, H. Harbrecht, P. Odermatt, S. Sayasone, and N. Chitnis. Analysis of interventions against the liver fluke, Opisthorchis viverrini. Math. Biosci., 303:115–125, 2018.

  47. H. Harbrecht and J. Tausch. A fast sparse grid based space-time boundary element method for the nonstationary heat equation. Numer. Math., 140(1):239–264, 2018.

  48. R. Brügger, R. Croce, and H. Harbrecht. Solving a free boundary problem with non-constant coefficients. Math. Meth. Appl. Sci., 41(10):3653–3671, 2018.

  49. J. Dölz and H. Harbrecht. Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains. J. Comput. Phys., 371:506–527, 2018.

  50. A.-L. Haji-Ali, H. Harbrecht, M. Peters, and M. Siebenmorgen. Novel results for the anisotropic sparse grid quadrature. J. Complexity, 47:62–85, 2018.

  51. H. Harbrecht, W.L. Wendland, and N. Zorii. Minimal energy problems for strongly singular Riesz kernels. Math. Nachr., 291(1):55–85, 2018.

  52. S. Dahlke, H. Harbrecht, M. Utzinger, and M. Weimar. Adaptive wavelet BEM for boundary integral equations. Theory and numerical experiments. Numer. Funct. Anal. Optim., 39(2):208–232, 2018.

  53. C. Bürli, H. Harbrecht, P. Odermatt, S. Sayasone, and N. Chitnis. Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini. J. Theoret. Biol., 439:181–194, 2018.

  54. H. Harbrecht and M. Peters. The second order perturbation approach for PDEs on random domains. Appl. Numer. Math., 125:159–171, 2018.

  55. J. Dölz, H. Harbrecht, S. Kurz, S. Schöps, and F. Wolf. A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems. Comput. Methods Appl. Mech. Engrg., 330:83–101, 2018.

  56. H. Harbrecht and M. Utzinger. On adaptive wavelet boundary element methods. J. Comput. Math., 36(1):90–109, 2018.

  57. M. Dambrine, H. Harbrecht, M. Peters, and B. Puig. On Bernoulli's free boundary problem with a random boundary. Int. J. Uncertain. Quantif., 7(4):335–353, 2017.

  58. H. Harbrecht and M. Peters. Solution of free boundary problems in the presence of geometric uncertainties. In M. Bergounioux et al., editors, Topological Optimization and Optimal Transport in the Applied Sciences, pages 20–39, de Gruyter, Berlin-Bosten, 2017.

  59. J. Dölz, H. Harbrecht, and M. Peters. H-matrix based second moment analysis for rough random fields and finite element discretizations. SIAM J. Sci. Comput., 39(4):B618–B639, 2017.

  60. H. Harbrecht, M. Peters, and M. Schmidlin. Uncertainty quantification for PDEs with anisotropic random diffusion. SIAM J. Numer. Anal., 55(2):1002–1023, 2017.

  61. J. Dölz, H. Harbrecht, and C. Schwab. Covariance regularity and H-matrix approximation for rough random fields. Numer. Math., 135(4):1045–1071, 2017.

  62. H. Harbrecht, M. Peters, and M. Siebenmorgen. On the quasi-Monte Carlo quadrature with Halton points for elliptic PDEs with log-normal diffusion. Math. Comput., 86:771–797, 2017.

  63. M. Dambrine, I. Greff, H. Harbrecht, and B. Puig. Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness. J. Comput. Phys., 330:943–959, 2017.

  64. J. Dölz, H. Harbrecht, and M. Peters. An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces. Int. J. Numer. Meth. Eng., 108(13):1705–1728, 2016.

  65. H. Harbrecht, M. Peters, and M. Siebenmorgen. Analysis of the domain mapping method for elliptic diffusion problems on random domains. Numer. Math., 134(4):823–856, 2016.

  66. L. Graff, H. Harbrecht, and M. Zimmermann. On the computation of solution spaces in high dimensions. Struct. Multidiscip. Optim., 54(4):811–829, 2016.

  67. H. Harbrecht, W.L. Wendland, and N. Zorii. Rapid solution of minimal Riesz energy problems. Numer. Methods Partial Differential Equations, 32(6):1535–1552, 2016.

  68. H. Harbrecht and R. Schneider. A note on multilevel based error estimation. Comput. Methods Appl. Math., 16(3):447–458, 2016.

  69. H. Harbrecht, M. Peters, and M. Siebenmorgen. Multilevel accelerated quadrature for PDEs with log-normally distributed random coefficient. SIAM/ASA J. Uncertain. Quantif., 4(1):520–551, 2016.

  70. M. Dambrine, I. Greff, H. Harbrecht, and B. Puig. Numerical solution of the Poisson equation with a thin layer of random thickness. SIAM J. Numer. Anal., 54(2):921–941, 2016.

  71. H. Harbrecht and M. Peters. Combination technique based second moment analysis for elliptic PDEs on random domains. In J. Garcke and D. Pflüger, editors, Sparse grids and applications - Stuttgart 2014, volume 109 of Lecture Notes in Computational Science and Engineering, pages 51–77, Springer International Publishing, Switzerland, 2016.

  72. H. Harbrecht and F. Loos. Optimization of current carrying multicables. Comput. Optim. Appl., 63(1):237–271, 2016.

  73. M. Bugeanu and H. Harbrecht. A second order convergent trial method for free boundary problems in three dimensions. Interfaces Free Bound., 17(4):517–537, 2015.

  74. M. Bugeanu, R. Di Remigio, K. Mozgawa, S. Reine, H. Harbrecht, and L. Frediani. Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements. Phys. Chem. Chem. Phys., 17:31566–31581, 2015.

  75. M. Dambrine, C. Dapogny, and H. Harbrecht. Shape optimization for quadratic functionals and states with random right-hand sides. SIAM J. Control Optim., 53(5):3081–3103, 2015.

  76. J. Dölz, H. Harbrecht, and M. Peters. H-matrix accelerated second moment analysis for potentials with rough correlation. J. Sci. Comput., 65(1):387–410, 2015.

  77. M. Dambrine, H. Harbrecht, and B. Puig. Computing quantities of interest for random domains with second order shape sensitivity analysis. ESAIM Math. Model. Numer. Anal., 49(5):1285–1302, 2015.

  78. H. Harbrecht and G. Mitrou. Stabilization of the trial method for the Bernoulli problem in case of prescribed Dirichlet data. Math. Meth. Appl. Sci., 38(13):2850–2863, 2015.

  79. H. Harbrecht, M. Peters, and M. Siebenmorgen. Efficient approximation of random fields for numerical applications. Numer. Linear Algebra Appl., 22(4):596–617, 2015.

  80. H. Harbrecht and J. Tausch. On shape optimization with parabolic state equation. In G. Leugering et al., editors, Trends in PDE Constrained Optimization, volume 165 of International Series of Numerical Mathematics, pages 213–229, Birkhäuser, Basel, 2014.

  81. H. Harbrecht and G. Mitrou. Improved trial methods for a class of generalized Bernoulli problems. J. Math. Anal. Appl., 420(1):177–194, 2014.

  82. M. Griebel and H. Harbrecht. On the convergence of the combination technique. In J. Garcke and D. Pflüger, editors, Sparse grids and applications - Munich 2012, volume 97 of Lecture Notes in Computational Science and Engineering, pages 55–74, Springer, Berlin-Heidelberg, 2014.

  83. J. Fender, L. Graff, H. Harbrecht, and M. Zimmermann. Identifying key parameters for design improvement in high-dimensional systems with uncertainty. J. Mech. Design, 136(4):041007, 2014.

  84. D. Alm, H. Harbrecht, and U. Krämer. The H2-wavelet method. J. Comput. Appl. Math., 267:131–159, 2014.

  85. M. Griebel and H. Harbrecht. Approximation of bi-variate functions: singular value decomposition versus sparse grids. IMA J. Numer. Anal., 34(1):28–54, 2014.

  86. H. Harbrecht, W.L. Wendland, and N. Zorii. Riesz minimal energy problems on Ck-1,1-manifolds. Math. Nachr., 287(1):48–69, 2014.

  87. M. Griebel and H. Harbrecht. A note on the construction of L-fold sparse tensor product spaces. Constr. Approx., 38(2):235–251, 2013.

  88. H. Harbrecht and J. Li. First order second moment analysis for stochastic interface problems based on low-rank approximation. ESAIM Math. Model. Numer. Anal., 47(5):1533–1552, 2013.

  89. H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based k-th moment analysis of elliptic problems with random diffusion. J. Comput. Phys., 252:128–141, 2013.

  90. A. Buffa, H. Harbrecht, A. Kunoth, and G. Sangalli. BPX-preconditioning for isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 265:63–70, 2013.

  91. H. Harbrecht and M. Peters. Comparison of fast boundary element methods on parametric surfaces. Comput. Methods Appl. Mech. Engrg., 261–262:39–55, 2013.

  92. M. Griebel and H. Harbrecht. On the construction of sparse tensor product spaces. Math. Comput., 82(282):975–994, 2013.

  93. H. Harbrecht and J. Tausch. On the numerical solution of a shape optimization problem for the heat equation. SIAM J. Sci. Comput., 35(1):A104–A121, 2013.

  94. H. Harbrecht, M. Peters, and M. Siebenmorgen. On multilevel quadrature for elliptic stochastic partial differential equations. In J. Garcke and M. Griebel, editors, Sparse grids and applications, volume 88 of Lecture Notes in Computational Science and Engineering, pages 161–179, Springer, Berlin-Heidelberg, 2013.

  95. H. Harbrecht. Preconditioning of wavelet BEM by the incomplete Cholesky factorization. Comput. Visual. Sci., 15(6):319–329, 2012.

  96. K. Eppler and H. Harbrecht. On a Kohn-Vogelius like formulation of free boundary problems. Comput. Optim. Appl., 52(1):69–85, 2012.

  97. H. Harbrecht, W.L. Wendland, and N. Zorii. On Riesz minimal energy problems. J. Math. Anal. Appl., 393(2):397–412, 2012.

  98. H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math., 62(4):428–440, 2012.

  99. K. Eppler and H. Harbrecht. Shape optimization for free boundary problems. Analysis and numerics. In G. Leugering et al., editors, Constrained Optimization and Optimal Control for Partial Differential Equations, volume 160 of International Series of Numerical Mathematics, pages 277–288, Birkhäuser, Basel, 2012.

  100. H. Harbrecht. On analytical derivatives for geometry optimization in the polarizable continuum model. J. Math. Chem., 49(9):1928–1936, 2011.

  101. H. Harbrecht and C. Schwab. Sparse tensor finite elements for elliptic multiple scale problems. Comput. Methods Appl. Mech. Engrg., 200(45-46):3100–3110, 2011.

  102. H. Harbrecht and M. Randrianarivony. Wavelet BEM on molecular surfaces. Solvent excluded surfaces. Computing, 92(4):335–364, 2011.

  103. H. Harbrecht and J. Tausch. An efficient numerical method for a shape identification problem arising from the heat equation. Inverse Problems, 27(6):065013, 2011.

  104. H. Harbrecht. Finite element based second moment analysis for elliptic problems in stochastic domains. In G. Kreiss et al., editors, Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2009, pages 433–442, Springer, Berlin-Heidelberg, 2010.

  105. V. Weijo, M. Randrianarivony, H. Harbrecht, and L. Frediani. Wavelet formulation of the polarizable continuum model. J. Comput. Chem., 31(7):1469–1477, 2010.

  106. H. Harbrecht. A finite element method for elliptic problems with stochastic input data. Appl. Numer. Math., 60(3):227–244, 2010.

  107. K. Eppler and H. Harbrecht. Tracking Dirichlet data in L2 is an ill-posed problem. J. Optim. Theory Appl., 145(1):17–35, 2010.

  108. H. Harbrecht and M. Randrianarivony. From Computer Aided Design to wavelet BEM. Comput. Vis. Sci., 13(2):69–82, 2010.

  109. H. Harbrecht. On output functionals of boundary value problems on stochastic domains. Math. Methods Appl. Sci., 33(1):91–102, 2010.

  110. H. Harbrecht. On the numerical solution of Plateau's problem. Appl. Numer. Math., 59(11):2785–2800, 2009.

  111. K. Eppler and H. Harbrecht. Tracking Neumann data for stationary free boundary problems. SIAM J. Control Optim., 48(5):2901–2916, 2009.

  112. H. Harbrecht and T. Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Probl. Imaging, 3(2):353–371, 2009.

  113. H. Harbrecht and M. Randrianarivony. Wavelet BEM on molecular surfaces. Parametrization and implementation. Computing, 86(1):1–22, 2009.

  114. K. Eppler and H. Harbrecht. Compact gradient tracking in shape optimization. Comput. Optim. Appl., 39(3):297–318, 2008.

  115. K. Eppler and H. Harbrecht. Wavelet based boundary element methods for exterior electromagnetic shaping. Eng. Anal. Bound. Elem., 32(8):645–657, 2008.

  116. K. Eppler, H. Harbrecht, and M. Mommer. A new fictitious domain method in shape optimization. Comput. Optim. Appl., 40(2):281–298, 2008.

  117. H. Harbrecht. Analytical and numerical methods in shape optimization. Math. Methods Appl. Sci., 31(18):2095–2114, 2008.

  118. H. Harbrecht. A Newton method for Bernoulli's free boundary problem in three dimensions. Computing, 82(1):11–30, 2008.

  119. H. Harbrecht, R. Schneider, and C. Schwab. Sparse second moment analysis for elliptic problems in stochastic domains. Numer. Math., 109(3):385–414, 2008.

  120. H. Harbrecht, R. Schneider, and C. Schwab. Multilevel frames for sparse tensor product spaces. Numer. Math., 110(2):199–220, 2008.

  121. W. Dahmen, H. Harbrecht, and R. Schneider. Adaptive methods for boundary integral equations. Complexity and convergence estimates. Math. Comput., 76(259):1243–1274, 2007.

  122. K. Eppler and H. Harbrecht. Shape optimization for 3D electrical impedance tomography. In R. Glowinski and J. Zolesio, editors, Free and Moving Boundaries: Analysis, Simulation and Control, volume 252 of Lecture Notes in Pure and Applied Mathematics, pages 165–184, Chapman & Hall/CRC, Boca Raton, FL, 2007.

  123. K. Eppler, H. Harbrecht, and R. Schneider. On convergence in elliptic shape optimization. SIAM J. Control Optim., 45:61–83, 2007.

  124. T. Gantumur, H. Harbrecht, and R. Stevenson. An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput., 76(258):615–629, 2007.

  125. H. Harbrecht and T. Hohage. Fast methods for three-dimensional inverse obstacle scattering. J. Integral Equations Appl., 19(3):237–260, 2007.

  126. W. Dahmen, H. Harbrecht, and R. Schneider. Compression techniques for boundary integral equations. Asymptotically optimal complexity estimates. SIAM J. Numer. Anal., 43(6):2251–2271, 2006.

  127. K. Eppler and H. Harbrecht. Efficient treatment of stationary free boundary problems. Appl. Numer. Math., 56(10-11):1326–1339, 2006.

  128. K. Eppler and H. Harbrecht. Coupling of FEM and BEM in shape optimization. Numer. Math., 104(1):47–68, 2006.

  129. K. Eppler and H. Harbrecht. Second-order shape optimization using wavelet BEM. Optim. Methods Softw., 21(1):135–153, 2006.

  130. H. Harbrecht and R. Schneider. Wavelet Galerkin schemes for boundary integral equations. Implementation and quadrature. SIAM J. Sci. Comput., 27(4):1347–1370, 2006.

  131. H. Harbrecht and R. Stevenson. Wavelets with patchwise cancellation properties. Math. Comput., 75(256):1871–1889, 2006.

  132. K. Eppler and H. Harbrecht. Second order Lagrange multiplier approximation for constrained shape optimization problems. Mårtensson's approach for shape problems. In J. Cagnol and J. Zolesio, editors, Control and boundary analysis, volume 240 of Lecture Notes in Pure and Applied Mathematics, pages 107–118, Chapman & Hall/CRC, Boca Raton, FL, 2005.

  133. K. Eppler and H. Harbrecht. Exterior electromagnetic shaping using wavelet BEM. Math. Methods Appl. Sci., 28(4):387–405, 2005.

  134. K. Eppler and H. Harbrecht. Fast wavelet BEM for 3d electromagnetic shaping. Appl. Numer. Math., 54(3-4):537–554, 2005.

  135. K. Eppler and H. Harbrecht. A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cybernet., 34(1):203–225, 2005.

  136. H. Harbrecht, U. Kähler, and R. Schneider. Wavelet Galerkin BEM on unstructured meshes. Comput. Vis. Sci., 8(3–4):189–199, 2005.

  137. H. Harbrecht and R. Schneider. Wavelet based fast solution of boundary integral equations. In N.M. Chuong et al., editors, Abstract and applied analysis. Proceedings of the international conference, Hanoi, Vietnam, August 13–17, 2002, pages 139–162, World Scientific, River Edge, NJ, 2004.

  138. H. Harbrecht and R. Schneider. Biorthogonal wavelet bases for the boundary element method. Math. Nachr., 269–270:167–188, 2004.

  139. K. Eppler and H. Harbrecht. Numerical solution of elliptic shape optimization problems using wavelet-based BEM. Optim. Methods Softw., 18(1):105–123, 2003.

  140. G. Gatica, H. Harbrecht, and R. Schneider. Least squares methods for the coupling of FEM and BEM. SIAM J. Numer. Anal., 41(5):1974–1995, 2003.

  141. H. Harbrecht, M. Konik, and R. Schneider. Fully discrete wavelet Galerkin schemes. Eng. Anal. Bound. Elem., 27(5):423–437, 2003.

  142. H. Harbrecht, F. Paiva, C. Pérez, and R. Schneider. Multiscale preconditioning for the coupling of FEM-BEM. Numer. Linear Algebra Appl., 10(3):197–222, 2003.

  143. H. Harbrecht, S. Pereverzev, and R. Schneider. Self-regularization by projection for noisy pseudodifferential equations of negative order. Numer. Math., 95(1):123–143, 2003.

  144. H. Harbrecht and R. Schneider. Adaptive wavelet Galerkin BEM. In K. Bathe, editor, Computational Fluid and Solid Mechanics 2003, pages 1982–1986. Elsevier, 2003.

  145. H. Harbrecht, F. Paiva, C. Pérez, and R. Schneider. Biorthogonal wavelet approximation for the coupling of FEM-BEM. Numer. Math., 92(2):325–356, 2002.

  146. H. Harbrecht and R. Schneider. Wavelet Galerkin schemes for 2D-BEM. In J. Elschner et al., editors, Problems and methods in mathematical physics (Chemnitz, 1999), volume 121 of Operator Theory: Advances and Applications, pages 221–260, Birkhäuser, Basel, 2001.

Theses

  1. H. Harbrecht. Analytical and numerical methods in shape optimization. Habilitation thesis, Christian-Albrechts-Universität zu Kiel, 2006.

  2. H. Harbrecht. Wavelet Galerkin schemes for the boundary element method in three dimensions. PHD thesis, Technische Universität Chemnitz, 2001.

  3. H. Harbrecht. Multiskalenbasierte Matrixkompression für das Galerkin-Verfahren. Diploma thesis, Universität Karlsruhe (TH), 1997.

Other Publications

  1. H. Harbrecht and M. Multerer. Samplets: Wavelet concepts for scattered data. In R. DeVore and A. Kunoth, editors, Multiscale, Nonlinear and Adaptive Approximation II, pages 299–326. Springer, Berlin-Heidelberg, 2024.

  2. H. Harbrecht. A. Kunoth, V. Simoncini, and K. Urban. Optimization Problems for PDEs in Weak Space-Time Form. Oberwolfach Rep. 20, 20(1):681–740, 2023.

  3. H. Harbrecht. Multilevel approximation of Gaussian random fields. Oberwolfach Rep., 18(3):1933–1936, 2021.

  4. H. Harbrecht. A wavelet-based approach for the optimal control of nonlocal operator equations. Oberwolfach Rep., 17(1):326–329, 2020.

  5. H. Harbrecht. About a fast isogeometric boundary element method. Oberwolfach Rep., 16(3):1997–2000, 2019.

  6. H. Harbrecht. Shape optimization under uncertainty. Oberwolfach Rep., 15(3):2350–2352, 2018.

  7. M.E. Vogt, F. Duddeck, H. Harbrecht, F. Stutz, M. Wahle, and M. Zimmermann. Computing solution-compensation spaces using an enhanced Fourier-Motzkin algorithm. PAMM (Proceedings of the GAMM Conference), 18:e201800103, 2018.

  8. H. Harbrecht. Novel results for the anisotropic sparse grid quadrature. Oberwolfach Rep., 14(1):1023–1026, 2017.

  9. H. Harbrecht. On shape optimization with parabolic state equation. Oberwolfach Rep., 14(1):184–185, 2017.

  10. H. Harbrecht. On fast boundary element methods for parametric surfaces. Oberwolfach Rep., 13(1):355–356, 2016.

  11. H. Harbrecht. Sparse BEM for the heat equation. Oberwolfach Rep., 12(1):124–126, 2015.

  12. H. Harbrecht. Second moment analysis for Robin boundary value problems on random domains. In M. Griebel, editor, Singular Phenomena and Scaling in Mathematical Models, pages 361–382, Springer, Berlin, 2014.

  13. H. Harbrecht. Multilevel quadrature for elliptic stochastic partial differential equations. Oberwolfach Rep., 10(3):2212–2215, 2013.

  14. H. Harbrecht. Modelling and simulation of elliptic PDEs on random domains. Oberwolfach Rep., 10(1):250–254, 2013.

  15. H. Harbrecht. Shape optimization for free boundary problems. Oberwolfach Rep., 8(1):215–218, 2011.

  16. H. Harbrecht. On error estimation in FEM without having Galerkin orthogonality. Oberwolfach Rep., 7(3):1979–1982, 2010.

  17. K. Eppler and H. Harbrecht. Shape optimization for free boundary problems. In A. El Jai, L. Afifi, and E. Zerrik, editors, Proceedings of the International Conference on Systems Theory: Modeling, Analysis and Control, May 25–28, 2009, Fes, Morocco, pages 457–464, Presses Universitaires des Perpignan, Perpignan, France, 2009.

  18. L. Afraites, M. Dambrine, K. Eppler, H. Harbrecht, and D. Kateb. On second order shape optimization methods. In A. El Jai, L. Afifi, and E. Zerrik, editors, Proceedings of the International Conference on Systems Theory: Modeling, Analysis and Control, May 25–28, 2009, Fes, Morocco, pages 399–407, Presses Universitaires des Perpignan, Perpignan, France, 2009.

  19. H. Harbrecht and R. Schneider. Rapid solution of boundary integral equations by wavelet Galerkin schemes. In R. DeVore and A. Kunoth, editors, Multiscale, Nonlinear and Adaptive Approximation, pages 249–294. Springer, Berlin-Heidelberg, 2009.

  20. H. Harbrecht. Sparse second moment analysis for elliptic problems in stochastic domains. Oberwolfach Rep., 4(3):2111–2113, 2007.

  21. H. Harbrecht, U. Kähler, and R. Schneider. Wavelet matrix compression for boundary integral equations. In K.-H. Hoffmann and A. Meyer, editors, Parallel Algorithms and Cluster Computing, volume 52 of Lecture Notes in Computational Science and Engineering, pages 129–149, Springer, Berlin-Heidelberg-New York, 2006.

  22. H. Harbrecht, U. Kähler, and R. Schneider. Fast wavelet BEM on complex geometries. PAMM (Proceedings of the GAMM Conference), 1:767–768, 2005.

  23. H. Harbrecht. Shape optimization using wavelet BEM. Oberwolfach Rep., 1(3):1809–1811, 2004.

  24. H. Harbrecht and R. Schneider. Wavelets for the fast solution of boundary integral equations. In H.A. Mang, F.G. Rammerstorfer, and J. Eberhardsteiner, editors, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), July 7–12, 2002, Vienna, Austria, Vienna University of Technology, Austria, 2002.