UNIVERSITÄT BASEL

Numerik stochastischer Differentialgleichungen

Frühjahrssemester 2014 Prof. Dr. H. Harbrecht

Übungsblatt 3.

zu bearbeiten bis Montag, 17.3.2014, 10:15 Uhr.

Aufgabe 1. (Tensorprodukte von Hilbert-Räumen)

Gegeben seien zwei reelle Hilbert-Räume H_1 und H_2 ausgestattet mit den Innenprodukten $\langle \cdot, \cdot \rangle_{H_1}$ bzw. $\langle \cdot, \cdot \rangle_{H_2}$. Für $\phi \in H_1$ und $\psi \in H_2$ definieren wir uns die Bilinearform $\phi \otimes \psi : H_1 \times H_2 \to \mathbb{R}$ durch

$$(\phi \otimes \psi)(v,w) = \langle \phi, v \rangle_{H_1} \langle \psi, w \rangle_{H_2}, \quad (v,w) \in H_1 \times H_2.$$

Der Tensorproduktraum $H_1 \otimes H_2$ ist dann definiert als die Vervollständigung solcher Bilinearformen bezüglich des Skalarproduktes

$$\langle \phi_1 \otimes \psi_1, \phi_2 \otimes \psi_2 \rangle_{H_1 \otimes H_2} := \langle \phi_1, \phi_2 \rangle_{H_1} \langle \psi_1, \psi_2 \rangle_{H_2}.$$

Seien $\{\phi_i\}_{i\in\mathbb{N}}$ und $\{\psi_j\}_{j\in\mathbb{N}}$ jeweils Orthonormalbasen von H_1 und H_2 . Zeigen Sie, dass $\{\phi_i\otimes\psi_j\}_{i,j\in\mathbb{N}}$ eine Orthonormalbasis, also ein vollständiges Orthonormalsystem, von $H_1\otimes H_2$ bilden.

(4 Punkte)

Aufgabe 2. (Orthonormalbasen von Hilbert-Räumen)

Wir betrachten zwei separable Massräume $(\Omega_1, \Sigma_1, P_1)$ und $(\Omega_2, \Sigma_2, P_2)$ mit $\Omega_1 \subset \mathbb{R}^n$ und $\Omega_2 \subset \mathbb{R}^m$. Wie wir wissen, sind die Räume $L_{P_1}^2(\Omega_1)$ und $L_{P_2}^2(\Omega_2)$ separable Hilbert-Räume. Seien $\{\phi_i(\mathbf{x})\}_{i\in\mathbb{N}}$ und $\{\psi_j(\mathbf{y})\}_{j\in\mathbb{N}}$ die Orthonormalbasen von $L_{P_1}^2(\Omega_1)$ und $L_{P_2}^2(\Omega_2)$. Zeigen Sie, dass $\{\phi_i(\mathbf{x})\psi_j(\mathbf{y})\}$ eine Orthonormalbasis von $L_{P_1\otimes P_2}^2(\Omega_1\times\Omega_2)$ bilden.

(4 Punkte)

Aufgabe 3. (Identifizierung von Tensorprodukträumen)

Weisen Sie mit Hilfe der vorangegangenen Aufgaben nach, dass die Räume $L^2_{P_1 \otimes P_2}(\Omega_1 \times \Omega_2)$ und $L^2_{P_1}(\Omega_1) \otimes L^2_{P_2}(\Omega_2)$ isometrisch isomorph sind.

(4 Punkte)

Aufgabe 4. (universelle Eigenschaft von Tensorprodukten)

Das Tensorprodukt von zwei Vektorräumen über demselben Grundkörper kann bis auf Isomorphie eindeutig charakterisiert werden durch die universelle Eigenschaft. Im Falle von reellen Hilbert-Räumen H_1, H_2 besagt diese, dass es eine schwache Hilbert-Schmidt-Abbildung $p: H_1 \times H_2 \to H_1 \otimes H_2$ gibt, so dass zu jeder bilinearen, beschränkten Abbildung $h: H_1 \times H_2 \to \mathbb{R}$ genau eine lineare, beschränkte Abbildung $g: H_1 \otimes H_2 \to \mathbb{R}$ existiert mit $h = g \circ p$. Weisen Sie die universelle Eigenschaft für das Tensorprodukt von zwei Hilbert-Räumen nach.

Hinweis. Eine beschränkte und bilineare Abbildung $p: H_1 \times H_2 \to H_1 \otimes H_2$ heisst schwache Hilbert-Schmidt-Abbildung, falls für alle $h \in H_1 \otimes H_2$ die Abbildung $p_h: H_1 \times H_2 \to \mathbb{R}$ mit $p_h(x_1, x_2) := \langle p(x_1, x_2), h \rangle_{H_1 \otimes H_2}$ ein Hilbert-Schmidt-Funktional ist, das ist eine bilineare, beschränkte Abbildung, so dass für Orthonormalbasen $\{\phi_i\}_{i \in I}$ von H_1 und $\{\psi_j\}_{j \in J}$ von H_2 gilt

$$\sum_{i \in I} \sum_{j \in J} p_h(\phi_i, \psi_j)^2 < \infty.$$

(4 Punkte)