Exercise Sheet 9.

Exercise 1 (Low-rank matrices | 4 points).
We define for $p \in \mathbb{N}$ the set of $2^{p} \times 2^{p}$ matrices of rank 1 as

$$
\mathcal{R}_{p}=\left\{\mathbf{A}=\mathrm{xy}^{T} \in \mathbb{R}^{2^{p} \times 2^{p}}\right\} .
$$

Show that:
(a) The matrix-vector multiplication of $\mathbf{R} \in \mathcal{R}_{p}$ with $\mathbf{x} \in \mathbb{R}^{n}$ requires $N_{M V}(p)=3 n-1$ operations.
(b) The matrix-matrix multiplication of $\mathbf{R}_{1}, \mathbf{R}_{2} \in \mathcal{R}_{p}$ requires also $N_{\mathbf{R} \cdot \mathrm{R}}(p)=3 n-1$ operations.

Exercise 2 (Hierarchical matrices | 4 points).
The set of hierarchical matrices \mathcal{H}_{k} is recursively defined as

$$
\begin{aligned}
& \mathcal{H}_{0}:=\mathbb{R}^{1 \times 1}, \\
& \mathcal{H}_{k}:=\left\{\mathbf{H}=\left[\begin{array}{ll}
\mathbf{H}_{11} & \mathbf{H}_{12} \\
\mathbf{H}_{21} & \mathbf{H}_{22}
\end{array}\right] \in \mathbb{R}^{2^{k} \times 2^{k}} \text { with } \mathbf{H}_{11}, \mathbf{H}_{22} \in \mathcal{H}_{k-1} \text { and } \mathbf{H}_{12}, \mathbf{H}_{21} \in \mathcal{R}_{k-1}\right\} .
\end{aligned}
$$

Information: The matrix addition of two matrices $\mathbf{R}_{1}, \mathbf{R}_{2} \in \mathcal{R}_{p}$ is in general not in \mathcal{R}_{p}, because the rank may increase. Therefore, a formatted addition is used. This forms the addition $\mathbf{R}_{1}+\mathbf{R}_{2}$ and then performs the best approximation by a matrix of rank 1 . If we denote by $B_{\mathcal{R}_{p}}$ the best approximation in \mathcal{R}_{p}, then the formatted addition has the form

$$
\mathbf{R}_{1} \oplus_{1} \mathbf{R}_{2}:=B_{\mathcal{R}_{p}}\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)
$$

The formatted addition in \mathcal{R}_{p} needs $N_{\mathrm{R}+\mathrm{R}}=18 n+29$ operations.
We define the formatted matrix addition for $\mathrm{G}, \mathrm{H} \in \mathcal{H}_{k}$ recursively by

$$
\mathbf{G} \oplus_{1} \mathbf{H}:=\left[\begin{array}{ll}
\mathbf{G}_{11} \oplus_{1} \mathbf{H}_{11} & \mathbf{G}_{12} \oplus_{1} \mathbf{H}_{12} \\
\mathbf{G}_{21} \oplus_{1} \mathbf{H}_{21} & \mathbf{G}_{22} \oplus_{1} \mathbf{H}_{22}
\end{array}\right] .
$$

Let $p \in \mathbb{N}$ and $n=2^{p}$. Show:
(a) The matrix-vector multiplication of $\mathbf{H} \in \mathcal{H}_{p}$ with $\mathbf{x} \in \mathbb{R}^{n}$ requires $N_{M V}(p)=4 n \log _{2} n-$ $n+2$ operations.
(b) The formatted addition of $\mathrm{G}, \mathrm{H} \in \mathcal{H}_{p}$ and that of $\mathbf{H} \in \mathcal{H}_{p}$ with $\mathrm{R} \in \mathcal{R}_{p}$ require $N_{\mathrm{H}+\mathrm{H}}(p)=N_{\mathrm{H}+\mathrm{R}}(p)=18 n \log _{2} n+59 n-58$ operations.
(c) The matrix-matrix multiplication of $\mathbf{G}, \mathrm{H} \in \mathcal{H}_{p}$ requires $N_{\mathbf{H} \cdot \mathbf{H}}(p)=13 n \log _{2}^{2} n+$ $65 n \log _{2} n-51 n+52$ operations. For the occurring additions, formatted additions shall be used here.

Exercise 3 (Constrained optimization $\mid 4$ points).
For $\mathbf{x} \in \mathbb{R}^{3}$ consider the constrained optimization problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{3}} \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x} \quad \text { subject to } \quad C^{\top} \mathbf{x}=\boldsymbol{\gamma}, \quad D^{\top} \mathbf{x} \geq \boldsymbol{\delta}
$$

and consider the Lagrangian

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}):=\frac{1}{2} \mathbf{x}^{\top} A \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}-\boldsymbol{\mu}^{\top}\left(\mathbf{C}^{\top} \mathbf{x}-\gamma\right)-\lambda^{\top}\left(\mathrm{D}^{\top} \mathbf{x}-\delta\right) .
$$

Show that if

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 4 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right], \quad \mathbf{D}=\mathbf{I}, \quad \boldsymbol{\gamma}=\boldsymbol{\delta}=\mathbf{0}
$$

then the triple $\left(\mathrm{x}^{\star}, \mu^{\star}, \boldsymbol{\lambda}^{\star}\right)$ given by

$$
\mathbf{x}^{\star}=\frac{1}{9}(1,1,0)^{\top}, \quad \mu^{\star}=-\frac{5}{9}, \quad \lambda^{\star}=\frac{1}{9}(0,0,1)^{\top}
$$

satisfies the Karush-Kuhn-Tucker (KKT) conditions

$$
\nabla_{\mathrm{x}} \mathcal{L}\left(\mathrm{x}^{\star}, \boldsymbol{\mu}^{\star}, \lambda^{\star}\right)=0, \quad \mathrm{C}^{\top} \mathbf{x}^{\star}=\gamma, \quad \mathrm{D}^{\top} \mathbf{x}^{\star} \geq \boldsymbol{\delta}, \quad \lambda \geq 0, \quad \lambda^{\top}\left(\mathrm{D}^{\top} \mathrm{x}^{\star}-\boldsymbol{\delta}\right)=0 .
$$

Exercise 4 (Dual problem $\mid 4$ points).
Suppose that f and $-c_{i}, i=1,2, \ldots, m$, are convex and continuously differentiable functions on \mathbb{R}^{n}. For $\mathbf{x} \in \mathbb{R}^{n}$ consider the constrained optimization problem

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \quad \text { subject to } \quad \mathbf{c}(\mathbf{x}) \geq \mathbf{0} \tag{1}
\end{equation*}
$$

where $\mathbf{c}(\mathbf{x}):=\left(c_{1}(\mathbf{x}), c_{2}(\mathbf{x}), \ldots, c_{m}(\mathbf{x})\right)^{\top}$. The Lagrangian with Lagrange multiplier $\boldsymbol{\lambda} \in \mathbb{R}^{m}$ is

$$
\mathcal{L}(\mathbf{x}, \lambda)=f(\mathbf{x})-\lambda^{\top} \mathbf{c}(\mathbf{x})
$$

We define the dual objective function $q: \mathbb{R}^{m} \rightarrow \mathbb{R}$ as follows

$$
q(\boldsymbol{\lambda}):=\inf _{\mathbf{x} \in \mathbb{R}^{m}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda})
$$

Then, the dual problem is defined as follows

$$
\begin{equation*}
\max _{\lambda \in \mathbb{R}^{m}} q(\lambda) \quad \text { subject to } \quad \lambda \geq 0 \tag{2}
\end{equation*}
$$

(a) Suppose that \mathbf{x}^{*} is a solution of (1). Show that any $\boldsymbol{\lambda}^{*}$, for which $\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)$ satisfies the KKT conditions, is a solution of (2).
(b) Suppose that \mathbf{x}^{*} is a solution of (1) and $\boldsymbol{\lambda}^{*}$ satisfies the KKT conditions. Suppose that $\tilde{\lambda}$ solves (2) and $\tilde{\mathbf{x}}=\operatorname{arginf}_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \tilde{\lambda})$. Assume further that $\mathcal{L}(\cdot, \tilde{\lambda})$ is a strictly convex function. Show that $\mathbf{x}^{*}=\tilde{\mathbf{x}}$, i.e., $\tilde{\mathbf{x}}$ is the unique solution of (1), and $f\left(\mathbf{x}^{*}\right)=\mathcal{L}(\tilde{\mathbf{x}}, \tilde{\lambda})$.

