

Exercise Sheet 9.

Hand in due to: Friday, 26/05/2023, 14:00

Exercise 1 (Low-rank matrices | 4 points).

We define for $p \in \mathbb{N}$ the set of $2^p \times 2^p$ matrices of rank 1 as

$$\mathcal{R}_p = \{ \mathbf{A} = \mathbf{x}\mathbf{y}^T \in \mathbb{R}^{2^p \times 2^p} \}.$$

Show that:

- (a) The matrix-vector multiplication of $\mathbf{R} \in \mathcal{R}_p$ with $\mathbf{x} \in \mathbb{R}^n$ requires $N_{MV}(p) = 3n 1$ operations.
- (b) The matrix-matrix multiplication of $\mathbf{R}_1, \mathbf{R}_2 \in \mathcal{R}_p$ requires also $N_{\mathbf{R}\cdot\mathbf{R}}(p) = 3n 1$ operations.

Exercise 2 (Hierarchical matrices | 4 points).

The set of hierarchical matrices \mathcal{H}_k is recursively defined as

$$\mathcal{H}_0 := \mathbb{R}^{1 \times 1},$$

$$\mathcal{H}_k := \left\{ \mathbf{H} = \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{21} & \mathbf{H}_{22} \end{bmatrix} \in \mathbb{R}^{2^k \times 2^k} \text{ with } \mathbf{H}_{11}, \mathbf{H}_{22} \in \mathcal{H}_{k-1} \text{ and } \mathbf{H}_{12}, \mathbf{H}_{21} \in \mathcal{R}_{k-1} \right\}.$$

Information: The matrix addition of two matrices $\mathbf{R}_1, \mathbf{R}_2 \in \mathcal{R}_p$ is in general not in \mathcal{R}_p , because the rank may increase. Therefore, a formatted addition is used. This forms the addition $\mathbf{R}_1 + \mathbf{R}_2$ and then performs the best approximation by a matrix of rank 1. If we denote by $B_{\mathcal{R}_p}$ the best approximation in \mathcal{R}_p , then the formatted addition has the form

 $\mathbf{R}_1 \oplus_1 \mathbf{R}_2 := B_{\mathcal{R}_p}(\mathbf{R}_1 + \mathbf{R}_2).$

The formatted addition in \mathcal{R}_p needs $N_{\mathbf{R}+\mathbf{R}} = 18n + 29$ operations.

We define the formatted matrix addition for $G, H \in \mathcal{H}_k$ recursively by

$$\mathbf{G} \oplus_1 \mathbf{H} := \begin{bmatrix} \mathbf{G}_{11} \oplus_1 \mathbf{H}_{11} & \mathbf{G}_{12} \oplus_1 \mathbf{H}_{12} \\ \mathbf{G}_{21} \oplus_1 \mathbf{H}_{21} & \mathbf{G}_{22} \oplus_1 \mathbf{H}_{22} \end{bmatrix}$$

Let $p \in \mathbb{N}$ and $n = 2^p$. Show:

- (a) The matrix-vector multiplication of $\mathbf{H} \in \mathcal{H}_p$ with $\mathbf{x} \in \mathbb{R}^n$ requires $N_{MV}(p) = 4n \log_2 n n + 2$ operations.
- (b) The formatted addition of $\mathbf{G}, \mathbf{H} \in \mathcal{H}_p$ and that of $\mathbf{H} \in \mathcal{H}_p$ with $\mathbf{R} \in \mathcal{R}_p$ require $N_{\mathbf{H}+\mathbf{H}}(p) = N_{\mathbf{H}+\mathbf{R}}(p) = 18n \log_2 n + 59n 58$ operations.
- (c) The matrix-matrix multiplication of $G, H \in \mathcal{H}_p$ requires $N_{H \cdot H}(p) = 13n \log_2^2 n + 65n \log_2 n 51n + 52$ operations. For the occurring additions, formatted additions shall be used here.

Exercise 3 (Constrained optimization | 4 points).

For $\mathbf{x} \in \mathbb{R}^3$ consider the constrained optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^3}\frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{A}\mathbf{x} - \mathbf{b}^\mathsf{T}\mathbf{x} \quad \text{subject to} \quad \mathbf{C}^\mathsf{T}\mathbf{x} = \mathbf{\gamma}, \quad \mathbf{D}^\mathsf{T}\mathbf{x} \ge \mathbf{\delta},$$

and consider the Lagrangian

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) \coloneqq \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} - \mathbf{b}^{\mathsf{T}} \mathbf{x} - \boldsymbol{\mu}^{\mathsf{T}} (\mathbf{C}^{\mathsf{T}} \mathbf{x} - \boldsymbol{\gamma}) - \boldsymbol{\lambda}^{\mathsf{T}} (\mathbf{D}^{\mathsf{T}} \mathbf{x} - \boldsymbol{\delta}).$$

Show that if

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \qquad \mathbf{D} = \mathbf{I}, \quad \mathbf{\gamma} = \mathbf{\delta} = \mathbf{0},$$

then the triple $(\mathbf{x}^{\star}, \mu^{\star}, \lambda^{\star})$ given by

$$\mathbf{x}^{\star} = \frac{1}{9}(1, 1, 0)^{\mathsf{T}}, \quad \mu^{\star} = -\frac{5}{9}, \quad \lambda^{\star} = \frac{1}{9}(0, 0, 1)^{\mathsf{T}},$$

satisfies the Karush-Kuhn-Tucker (KKT) conditions

$$\forall_{x}\mathcal{L}(x^{\star},\mu^{\star},\lambda^{\star})=0, \quad C^{\intercal}x^{\star}=\gamma, \quad D^{\intercal}x^{\star}\geq\delta, \quad \lambda\geq 0, \quad \lambda^{\intercal}(D^{\intercal}x^{\star}-\delta)=0.$$

Exercise 4 (Dual problem | 4 points).

Suppose that f and $-c_i$, i = 1, 2, ..., m, are convex and continuously differentiable functions on \mathbb{R}^n . For $\mathbf{x} \in \mathbb{R}^n$ consider the constrained optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) \quad \text{subject to} \quad \mathbf{c}(\mathbf{x}) \ge \mathbf{0},\tag{1}$$

where $\mathbf{c}(\mathbf{x}) := (c_1(\mathbf{x}), c_2(\mathbf{x}), \dots, c_m(\mathbf{x}))^{\mathsf{T}}$. The Lagrangian with Lagrange multiplier $\boldsymbol{\lambda} \in \mathbb{R}^m$ is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{c}(\mathbf{x})$$

We define the dual objective function $q : \mathbb{R}^m \to \mathbb{R}$ as follows

$$q(\mathbf{\lambda}) := \inf_{\mathbf{x}\in\mathbb{R}^m} \mathcal{L}(\mathbf{x},\mathbf{\lambda}).$$

Then, the dual problem is defined as follows

$$\max_{\lambda \in \mathbb{R}^m} q(\lambda) \quad \text{subject to} \quad \lambda \ge 0. \tag{2}$$

- (a) Suppose that x^* is a solution of (1). Show that any λ^* , for which (x^*, λ^*) satisfies the KKT conditions, is a solution of (2).
- (b) Suppose that \mathbf{x}^* is a solution of (1) and λ^* satisfies the KKT conditions. Suppose that $\tilde{\lambda}$ solves (2) and $\tilde{\mathbf{x}} = \operatorname{arginf}_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \tilde{\lambda})$. Assume further that $\mathcal{L}(\cdot, \tilde{\lambda})$ is a strictly convex function. Show that $\mathbf{x}^* = \tilde{\mathbf{x}}$, i.e., $\tilde{\mathbf{x}}$ is the unique solution of (1), and $f(\mathbf{x}^*) = \mathcal{L}(\tilde{\mathbf{x}}, \tilde{\lambda})$.