Exercise Sheet 7.

Exercise 1 (Translational and radial invariance | 4 points).
Show that
(a) A kernel K is translational invariant if and only if there exists $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $K(x, y)=\Phi(x-y)$ for all $x, y \in \mathbb{R}^{d}$.
(b) A kernel K is radial if and only if there exists $\Phi: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ such that $K(x, y)=$ $\Phi\left(\|x-y\|_{2}\right)$ for all $x, y \in \mathbb{R}^{d}$.
(c) Let $K(x, y)=\Phi(x-y)$ be a positive definite and translational invariant kernel on \mathbb{R}^{d}. Then $\widehat{\Phi}(x) \in \mathbb{R}$ for all $x \in \mathbb{R}^{d}$.
(d) Let $K(x, y)=\Phi(x-y)$ be a positive definite and translational invariant kernel on \mathbb{R}^{d}. Then $\Phi(0) \geq 0$ and $\Phi(0)=0$ implies $\Phi(x)=0$ for $x \in \mathbb{R}^{d}$.

Exercise 2 (Approximation by convolution | 4 points).
Let $m \in \mathbb{N}$ and $g_{m}(x):=(m / \pi)^{d / 2} \exp \left(-m\|x\|_{2}^{2}\right), x \in \mathbb{R}^{d}$. Show that:
(a) $\int_{\mathbb{R}^{d}} g(x) d x=1$
(b) $\widehat{g}_{m}(x)=\frac{1}{(2 \pi)^{d / 2}} \exp \left(-\frac{\|x\|_{2}^{2}}{4 m}\right)$
(c) $\widehat{\hat{g}}_{m}(x)=g_{m}(x)$
(d) If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is continuous and slowly increasing, i.e., there exist $l \in \mathbb{N}$ and $M>0$ such that $|f(x)| \leq M\left(1+\|x\|_{2}\right)^{l}$ for all $x \in \mathbb{R}^{d}$, then

$$
f(x)=\lim _{m \rightarrow \infty}\left(f * g_{m}\right)(x):=\lim _{m \rightarrow \infty} \int_{\mathbb{R}^{d}} f(y) g_{m}(y-x) d y .
$$

Hint. Consider first the case $x=0$, then conclude the statement for $x \neq 0$ by replacing f by $f(\cdot+x)$.

Exercise 3 (Trace norm | 4 points).
Let $A=\left[a_{i j}\right]_{i, j=1}^{n} \in \mathbb{R}^{n \times n}$ be a symmetric and positive semi-definite matrix. Show that the trace norm $\|A\|_{\text {tr }}:=\sum_{i=1}^{n} a_{i i}$ satisfies the following three norm properties on the set of positive semi-definite matrices:
(a) $\|A\|_{\text {tr }}=0$ if and only if $A=0$
(b) $\|\alpha A\|_{\text {tr }}=|\alpha|\|A\|_{\text {tr }}$
(c) $\|A+B\|_{\mathrm{tr}} \leq\|A\|_{\mathrm{tr}}+\|B\|_{\mathrm{tr}}$

Hint. First prove that $\left|a_{i j}\right| \leq \sqrt{a_{i i} a_{j j}}$.

Exercise 4 (Kahan matrix | 4 points).
The Kahan matrix is given by

$$
K_{n}(\theta)=\left[k_{i j}\right]_{i, j=1}^{n}=\operatorname{diag}\left(1, s, s^{2}, \ldots, s^{n-1}\right)\left[\begin{array}{cccc}
1 & -c & \cdots & -c \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & -c \\
0 & \cdots & 0 & 1
\end{array}\right]
$$

where $c=\cos (\theta), s=\sin (\theta)$ and $0<\theta<\pi / 2$. Show that:
(a) The inverse of Kahan matrix is given by the upper triangular matrix $K_{n}^{-1}=\left[r_{i j}\right]_{i, j=1}^{n}$ with

$$
r_{i j}= \begin{cases}s^{1-j}, & \text { if } i=j \\ s^{1-j} c(c+1)^{j-i-1}, & \text { if } i<j\end{cases}
$$

(b) There holds

$$
s^{n-1} K_{n}^{-1}(\theta) \rightarrow[0, \ldots, 0, \mathbf{x}] \text { as } \theta \rightarrow 0
$$

where $\mathbf{x}=\left[2^{n-2}, 2^{n-3}, \ldots, 1\right]^{\top}$.
(c) The spectral norm of the inverse Kahan matrix satisfies

$$
\left|k_{n n}\right|\left\|K_{n}^{-1}\right\|_{2} \rightarrow \sqrt{\frac{4^{n-1}+2}{3}} \text { as } \theta \rightarrow 0
$$

