

Exercise Sheet 6.

Hand in due to: Friday, 28/04/2023, 14:00

Exercise 1 (Sobolev space as a RKHS | 4 points).

Show that $H_0^1((0, 1))$ is a RKHS with the covariance

 $K(x, y) := \min(x, y) - xy.$

of the Brownian bridge as reproducing kernel.

Exercise 2 (Basic operations in $H_K(\Omega) \mid 4$ points).

Let K, K_1 and K_2 be symmetric and positive definite kernels on $\Omega \times \Omega \to \mathbb{R}$. Consider a function $g : \Omega \to \mathbb{R} \setminus \{0\}$ and a constant a > 0. Show that:

- (a) K(x, y) := g(x)g(y) results in $H_K(\Omega) = \operatorname{span}\{g\}$.
- (b) $K(x, y) := aK_1(x, y)$ results in $H_K(\Omega) = H_{K_1}(\Omega)$.
- (c) $K(x, y) := g(x)K_1(x, y)g(y)$ results in $H_K(\Omega) = gH_{K_1}(\Omega) := \{gf \mid f \in H_{K_1}(\Omega)\}.$
- (d) $K(x, y) := K_1(x, y) + K_2(x, y)$ results in $H_K(\Omega) = H_{K_1}(\Omega) + H_{K_2}(\Omega)$.

Exercise 3 (Interpolation in $H_K(\Omega) \mid 4$ points).

Let $H_K(\Omega)$ be an RKHS on Ω with reproducing kernel K and $f \in H_K(\Omega)$. For a set X of pairwise distinct points, let P_{H_X} denote the corresponding power function. Show that:

- (a) $||f||^2_{H_K(\Omega)} = ||f_X||^2_{H_K(\Omega)} + ||f f_X||^2_{H_K(\Omega)}$.
- (b) If $Y \subset \Omega$ is finite and $X \subset Y$, then $P_{H_Y}(x) \leq P_{H_X}(x)$ for all $x \in \Omega \setminus X$.

Exercise 4 (Power function for derivatives | 4 points).

Let $H_K(\Omega)$ be an RKHS on Ω with reproducing kernel $K \in C^{2k}(\Omega \times \Omega)$ and $f \in H_K(\Omega)$. For a set X of pairwise distinct points, we define the generalized power function as

$$P_{H_X}^{(\alpha)}(x) := \|D_2^{\alpha}K(\cdot, x) - D_2^{\alpha}K_X(\cdot, x)\|_{H_K(\Omega)}.$$

Show that for all $x \in \Omega$

$$|D_2^{\alpha}f(x) - D_2^{\alpha}f_X(x)| \le P_{H_X}^{(\alpha)}(x) ||f||_{H_K(\Omega)}.$$