

Exercise Sheet 5.

Hand in due to: Friday, 21/04/2023, 14:00

Exercise 1 (Strictly positive definiteness $K \mid 4$ points).

Let $H_K(\Omega)$ be a RKHS on Ω with reproducing kernel K. Prove that K is strictly positive definite if and only if $\{\delta_x : x \in \Omega\}$ are linearly independent.

Exercise 2 (RKHS and smoothness | 4 points).

Let Ω be a nonempty set, $K : \Omega \times \Omega \to \mathbb{R}$ be a strictly positive definite kernel, and H_K corresponding RKHS. Show the following statements:

- a) $d_K(x, y) = ||K(\cdot, x) K(\cdot, y)||_{H_K(\Omega)}$ is a metric.
- b) If dim(Ω) = ∞ , then dim($H_K(\Omega)$) = ∞ .
- c) Every $f \in H_K(\Omega)$ is Lipschitz continuous with respect to d_K .
- d) If $\Omega \subset \mathbb{R}^d$ is open and $K \in C^{2k}(\Omega \times \Omega)$ for $k \in \mathbb{N}$, then $H_K(\Omega) \subset C^k(\Omega)$.

Exercise 3 (Hierarchical Matrix | 4 points).

Let $N = 2^J$ and let T be an $(N \times N)$ -hierarchical matrix with a maximal Level L as on programming sheet 2. Assume that the low rank approximations of the offdiagonal blocks are of rank $\leq m$.

- a) Show that for storing T, one must store $mL2^J + 2^{2J-L}$ numbers.
- b) Show that the matrix-vector multiplication Tx requires $2mL2^{J} + 2^{2J-L}$ multiplications.

Exercise 4 (Regularity of the Fourier transform | 4 points).

Let $f \in L^1(\mathbb{R})$. Prove that

- a) $\hat{f} \in L^{\infty}(\mathbb{R}),$
- b) \hat{f} is uniformly continuous on \mathbb{R} .