

Exercise Sheet 4. Hand in due to: Friday, 14/04/2023, 14:00

Exercise 1 (Fourier transform properties | 4 points).

Let \hat{u} be a Fourier transform of $u : \mathbb{R}^d \to \mathbb{R}$. Prove then following properties of \hat{u} .

- (a) $\overline{\overline{u(x)}} = \overline{\widehat{u}(-\xi)}$.
- (b) $\widehat{u(-x)} = \widehat{u}(-\xi)$.
- (c) If u is even or odd, then \hat{u} is even or odd.
- (d) If u is real, then \hat{u} has even real part and odd imaginary part.
- (e) If u is real and even, then \hat{u} is real and even.
- (f) If u is real and odd, then \hat{u} is imaginary and even.
- (g) Let be $a \neq 0$ real, then $\widehat{u(ax)} = |a|^{-1}\widehat{u}(a^{-1}\xi)$.
- (h) For $y \in \mathbb{R}^d$, one has $\widehat{u(x-y)} = e^{-i\langle x,\xi \rangle} \widehat{u}(\xi)$.

Exercise 2 (Gaussian kernel | 4 points).

Prove that $K(x, y) = \exp(-\|x - y\|^2/(2\sigma)^2)$ is a reproducing kernel.

Hint. By using the positive definiteness, prove that the sum and the multiplication of two kernels define also kernels.

Exercise 3 (Mercer's theorem | 4 points).

Let H be a Hilbert space of functions $u : \Omega \to \mathbb{R}$ and $A : H \to H$ be a compact, positive definite, and self-adjoint operator with eigenpairs (λ_j, ϕ_j) such that

$$\Lambda^2 = \sum_{j=1}^{\infty} \lambda_j < \infty, \quad |\phi_j(x)| \le c, \quad (\phi_i, \phi_j) = \delta_{ij} \quad \text{for all} \quad i, j \in \mathbb{N} \text{ and } x \in \Omega$$

Let $H_{-} \supset H$ be a Hilbert space with a scalar product $(u, v)_{-} = (A^{1/2}u, A^{1/2}v)_{H}, H_{+} = img(A^{1/2})$ be a Hilbert space with a scalar product $(u, v)_{+} = (A^{-1/2}u, A^{-1/2}v)_{H}$. Show that

(a) $H_+ \subset H \subset H_-$ is a Gelfand tripple. Additionally consider the case when $H = L^2(\Omega)$.

(b) H_+ is a RKHS with reproducing kernel $K(x, y) = \sum_{j=1}^{\infty} \lambda_j \overline{\phi_j(x)} \phi_j(y)$.

Exercise 4 (Non-continuous kernel | 4 points).

Let $\{a_n\}_{n=0}^{\infty} = \{1/2^n\}_{n=0}^{\infty}$ and ϕ_n be a function which vanishes outside (a_{n+1}, a_{n-1}) and equals 1 at a_n . Let $K(x, y) = \sum_{n=1}^{\infty} \phi_n(x)\phi_n(y)$. Show that

- (a) K(x, y) is a reproducing kernel.
- (b) $K(x, \cdot), K(\cdot, y) \in C([0, 1])$, but $K(x, y) \notin C([0, 1] \times [0, 1])$, i.e. K is continuous separately in x and y but not continuous in both variables.

Hint. Use the Arzelà-Ascoli theorem to show that the unit ball of the RKHS is not compact in C([0, 1]). Then conclude that $K(x, y) \notin C([0, 1] \times [0, 1])$.