

Exercise Sheet 2.

Hand in due to: Friday, 24/03/2023, 14:00

Exercise 1 (Sobolev embedding theorem | 4 points).

Use the Fourier transform to prove that there holds $u \in L^{\infty}(\mathbb{R}^d)$ provided that $u \in H^s(\mathbb{R}^d)$ for some s > d/2.

Exercise 2 (Operator extension | 4 points).

Let X, Z be Banach spaces and Y be a dense subset in X. Let $T : Y \to Z$ be a bounded linear operator. Show that T is uniquely extendable to X.

Exercise 3 (Gelfand triple | 4 points).

Let V, H be Hilbert spaces and let $V \subset H$. Let the inclusion $i: V \to H$ be continuous, injective and img(i) be dense in H. Furthermore, let $||iv||_H \leq ||v||_V$. Let the norm on V' be given in a canonical way according to

 $\|\ell\|_{V'} := \sup_{0 \neq v \in V} \frac{\ell(v)}{\|v\|_V}.$

- (a) Show that any $h \in H$ can be taken to be a continuous linear functional over V. To do this, consider $\ell_h : V \to \mathbb{R}$ such that $\ell_h(v) := (h, iv)_H$.
- (b) Conclude that $i' : H \to V', i'(h) := \ell_h$ defines an inclusion with $||i'(h)||_{V'} \le ||h||_H$.
- (c) Show that the inclusion i' is injective.
- (d) Show that img(i') is dense in V'.

Hint.

- (i) The image $\operatorname{img}(i')$ is dense in V' if and only if there holds $\psi = 0$ for every $\psi \in V''$ satisfying $\psi(i'h) = 0$ for all $h \in H$.
- (ii) Since V is a Hilbert space and thus also reflexive, then for every $\psi \in V''$ there is a $v \in V$ such that for all $\ell \in V'$ we have $\psi(\ell) = \ell(v)$.

Exercise 4 (Fourier transform | 4 points).

Calculate the Fourier transform of following kernel functions:

(a) *Exponential*:

$$k_1(x) = \exp(-|x|)$$

(b) Gaussian:

$$k_2(x) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^2}{2}\right)$$

(c) Matérn-3/2:

$$k_3(x) = (1 + \sqrt{3}|x|) \exp(-\sqrt{3}|x|)$$