
High-dimensional approximation methods
Prof. Dr. H. Harbrecht

FS 2025

Project. Finish until: 31. July 2025

Problem formulation

In this project, we consider the Poisson problem in the random domain. To this end, letDr ⊂ R2

be a bounded and simply connected domain with boundary Lipschitz boundary )Dr , which
we call the reference domain. We consider a complete probability space (
,F ,P) with separable
set 
, �-field F ⊂ 2


 , and probability measure P. We then define V ∶ Dr × 
 → R2 as a
random vector field such that V(⋅, !) ∈ C

1
(Dr ;R2

). The random domain is the image of the
reference domain under the random domain mapping V, i.e.,

D(!) = V(Dr , !) and )D(!) = V()Dr , !).

We also define the respective hold-all as

D = ⋃

!∈


D(!).

Thus, the Poisson problem in the random domain D(!) reads as: for given V ∈ C
1
(Dr ;R2

)
2

and f ∈ L
2
(D), find u(!) ∈ H

1

0 (D(!)) satisfying
{

−�u(x, !) = f (x) for x ∈ D(!),

u(x, !) = 0 for x ∈ )D(!).

(1)

Modelling

We model the random domain mapping by means of the Karhunen-Loève expansion, i.e.,

V(x, !) = E[V](x) +
∞

∑

k=1

√

�k�k(x)Yk(!), (2)

where {(�k, �k)}k∈N are eigenpairs of the covariance operator

CV⟨v⟩(x) ∶= ∫
Dr

Cov[V](x, x
′
)v(x

′
) dx.

Here, the two-point covariance defined as

Cov[V](x, x
′
) ∶= E[(V(x, ⋅) − E[V](x)) ⊗ (V(x

′
, ⋅) − E[V](x′))].

For the discretization we assume that the random variables {Yk}k∈N are independent and
uniformly distributed in [−

√

3,

√

3], the sequence {‖
√

3�k�‖W 1,∞
(Dr ;R2

)
}k∈N is at least in �1(N),

and that the mean satisfies E[V] = x. These model assumptions allow for truncation of
Karhunen-Loève expansion for some 0 < M < ∞ and after parametrization we obtain

V(x, !) ⟶ V(x, y) = x +

M

∑

k=1

√

3�k�k(x)yk, y = (y1, … , yM) ∈ □ ∶= [−1, 1]
M
.



Figure 1: The square as reference domain with one sample of the shifted random map
V(x, y

∗
) − x and the asscoiated random domain.

Using this parametrization, we can rewrite the problem (1) in the random domain by
{

−�u(x, y) = f (x, y) for x ∈ D(y),

u(x, y) = 0 for x ∈ )D(y),

(3)

where D(y) = V(Dr , y) and )D(y) = V()Dr , y), compare Figure 1 for an illustration.

Exercise 1. Compute the random domain-mapping (2) by using the pivoted Cholesky decom-
position. This needs an update of the pivoted Cholesky decomposition for the vector case.
Implement the function

[Phi1, Phi2, D] = random_dom_map(kf, mesh_ref, tol),

where Phii = [�i,k]k=1,…,m, i = 1, 2, are matrices with the eigenfunctions and D is a matrix
with the eigenvalues. The inputs are kf, which is a discretization of the matrix covariance
function

Cov[V](x, x
′
) =

1

100 [

5 exp(−4‖x − x
′
‖_22) exp(−0.1‖2x − x

′
‖
2

2
)

exp(−0.1‖x − 2x
′
‖
2

2
) 5 exp(−‖x − x

′
‖
2

2
) ]

, (4)

mesh_ref is the mesh of the reference domain generated by mesh_ref=mesh_generation(),
and tol is the desired tolerance for the pivoted Cholesky decomposition.

Figure 2: Solution ur(x) on the reference domain and solution u(x, y∗) on the random domain.



Exercise 2. Given the reference domain Dr as mesh_ref, a sample of the random domain
D(y

∗
) corresponds to a mesh mesh_rand by just mapping the vertices using the approximate

Karhunen-Loève expansion. Solve the Poisson problem by

uh_rand = solve_poisson_problem(ff, mesh_rand)

with

ff = @(x) x(1) + 6*(x(2)+.5).^2.

Compare the solution u(x, y∗) with the solution on the reference domain ur(x).

Quantity of interest

In the case of random boundary value problems, we are interested in Quantities of Interest (QoI)
such as the expectation and the variance of the solution with respect to the reference domain. If
the parameter domain □ is equipped with theM-dimensional (normalized) Lebesgue measure
�
M , i.e., 2−M�M(□) = 1, these QoIs can be expressed as high-dimensional integrals

E[u](x) = 2
−M

∫
□

u(V(x, y), y) dy,

V[u](x) = 2
−M

∫
□

u
2

(V(x, y), y) dy − (E[u](x))
2

.

We aim in this project on the approximation of these QoIs with the help of a sparse grid
quadrature. We will base it on either the composite trapezoidal rule, the Gauss-Legendre quadrature,
or the Clenshaw-Curtis quadrature. The composite trapezoid rule differs from the other two
quadrature formulas in that it achieves higher accuracy by refinement (ℎ-convergence), while
the other two formulas achieve higher accuracy by increasing the degree of the polynomial
exactness (p-convergence).

One-dimensional quadrature formulas

In all formulas below, we set n = 2
J−1

+ 1 for J ∈ N>1. For J = 1, we use the midpoint rule,
i.e., �1 = 0 and w1 = 2.

Composite trapezoidal rule.We set quadrature points �k = (k − 1)ℎ − 1 for k = 1,… , n with
ℎ = 2

−J+2 and define the associated weights

wk =

{

ℎ, if 1 < k < n,

ℎ/2, otherwise.

Gauss-Legendre quadrature.The computation of the points andweights of the one-dimensional
Gauß-Legendre quadrature formula is performed using the three-way recursion of the orthonor-
malized Legendre polynomials, i.e,

u−1(x) = 0, u0(x) =

1

√

2

,

n + 1

√

4(n + 1)
2
− 1

un+1(x) = xun(x) −

n

√

4n
2
− 1

un−1(x)

for n = 0, 1, …. The points and weights for the quadrature formula in zeros of orthonormalized
polynomials with respect to the density �(x)

�k+1uk+1(x) = (x − �k)uk(x) − �kuk−1(x)



are obtained from the eigenvalues or first entries of the corresponding eigenvectors of the
Jacobi matrix

Jn =

⎡

⎢

⎢

⎢

⎣

�1 �1

�1 �2 ⋱

⋱ ⋱ �n−1

�n−1 �n

⎤

⎥

⎥

⎥

⎦

.

If {(�k, vk)}nk=1 are the eigenpairs of Jn, then the positions and weights are given by

�k = �k and wk = vk,1 ∫

1

−1

�(x) dx.

In particular, in our case the weights are given bywk = 2vk,1. It is well known that the exactness
of the Gauss-Legendre quadrature with n points is 2n − 1.

Clenshaw-Curtis quadrature. The points of the Clenshaw-Curtis quadrature formula are
given by extremes of the Chebyshev polynomials

Tn−1(x) = cos (n − 1) arccos(x))

with respect to the boundary points, i.e.

�k = cos
(

(k − 1)�

n − 1 )
for k = 1,… , n.

The determination of the associated weights is a more complex than in the case of the Gauß-
Legendre quadrature. There holds (see [3] for example)

wk =

1

1 − �
2

k

2 sin(�k−1)

n − 1

n−3

∑

s=0

sin
(

(s + 1)(k − 1)�

n − 1 )
�s for k = 2, 3, … , n − 1,

where �k = k�/(n − 1) and

w1 =

1

2(n − 1)(

0+2

n−2

∑

s=1


s+
n−1
)
, wn =

1

2(n − 1)(
2

n−1

∑

s=0

(−1)
j

s−
0+(−1)

n

n−1

)
.

Here


s =

1 + cos(�s)

1 − s
2

and �s =

2 cos(�s) + 2

−s
3
− 3s

2
+ s + 3

.

The implementation of these formulas inMatlab can be realized by the discrete sine transformation
dst.

A notable advantage of the Clenshaw-Curtis quadrature is its efficiency when dealing with
nested points, which leads to a significant reduction in the number of quadrature points required
in high dimensions. However, this is at the expense of the polynomial exactness. For example,
the Clenshaw-Curtis quadrature with n points has only the exactness n − 1.

Exercise 3. Implement the one-dimensional quadrature formulas in the Matlab functions

function Q = init_tz(J),
function Q = init_gl(J),
function Q = init_cc(J),

which set up all points in the array xi and all weights in the cell-array w for the associated
quadrature formulas. The points and weights should be stored in Q. Test your quadrature
formulas by calculating integrals over polynomials.



Sparse grid quadrature

Let QJ denote the square operator of any quadrature formula with nJ points, i.e.,

QJ ∶ C([−1, 1]) → R, QJ f =

nJ

∑

k=1

wJ ,kf (�J ,k). (5)

It applies for the composite trapezoidal rule and the Clenshaw-Curtis quadrature with nJ = 1

for J = 1 and nJ = 2
J−1

+ 1 for J ≥ 2 as well as nJ = J for the Gauß-Legendre quadrature.

A quadrature formula for functions in C(□) is obtained by tensorization

QJ ∶ C(□) → R, QJ f = (QJ ⊗⋯⊗QJ )f =

nJ

∑

k1=1

⋯

nJ

∑

kM=1

wJ ,k1
⋯wJ ,kM

f (�J ,k1
, … , �J ,kM

).

It can be rewritten by means of the difference quadrature formulas

�J f ∶= (QJ − QJ−1)f with Q0 = 0.

in accordance with

QJ f = ∑

‖j‖∞≤J

(�j1
⊗⋯ ⊗ �jM

)f .

The associated sparse grid quadrature formula is then obtained by restricting the index set {k ∈

NM

≥1
∶ ‖j‖∞ ≤ J } of the tensor product formula to {j ∈ NM

≥1
∶ ‖j‖1 ≤ J }, i.e.,

Q
SG

J
f = ∑

‖j‖1≤J+M−1

(�j1
⊗⋯ ⊗ �jM

)f . (6)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 3: Set of quadrature points in 2D: trapezoidal rule (left), Gauß-Legendre quadrature
(center), and Clenshaw-Curtis quadrature (right).

Implementation

A meaningful numbering of the multi-indices is required for the implementation of the sparse
grid quadrature (6). A specific numbering is provided by the droplet algorithm listed below,
compare [2]. However, the efficient implementation depends significantly on the number of
required function evaluations. For the non-nested Gauß-Legendre quadrature, the combination
technique can be used to evaluate the quadrature formula (6). Thus, only the one-dimensional
quadrature formulas (5) are required, which are combined according to the formula

Q
SG

J
f = ∑

J≤‖j‖1≤J+M−1

(−1)
J+M−‖j‖1−1

(

M − 1

‖j‖1 − J)
(Qj1

⊗⋯ ⊗ QjM
)f . (7)

With this formula, only the function value in zero is evaluated several times.



Algorithm. Droplet algorithm
Input: dimensionM and level J
Output: matrix K with all permissible indices j = [j1, … , jM]

1: set j = [1, … , 1]

2: set � = 1

3: while jM ≤ J do
4: if ‖j‖1 > J + M − 1 then
5: set j� = 1

6: set � = � + 1

7: else
8: save j in K
9: set � = 1

10: end
11: set j� = j� + 1

12: end while

For the nested quadrature formulas, the evaluation is more complicated. In this case, we have

Q
SG

J
f = ∑

‖j‖1≤J+M−1

nj
1

∑

k1=nj
1
−mj

1
+1

⋯

nj
M

∑

kM=nj
M
−mj

M
+1

wj,kf (ξj,k), (8)

see [1]. The numbers mj correspond to the number of new quadrature points at level j ,
i.e. mj = nj − nj−1, where we assume a hierarchical numbering of the quadrature points.
Furthermore, the quadrature points are ξj,k ∶= (�j1,k1

, … , �jM ,kM
) and the quadrature weights

are

wj,k = ∑

‖j+q‖1≤J+2M−1

vj1+q1,k1
⋯vjM+qM ,kM

(9)

with q ∈ NM

≥1
and

v
(j+q),k

∶=

{

wj ,k, if q = 1,

wj+q−1,k − wj+q−2,k, otherwise.

Exercise 4.Write a Matlab function

function K = droplet(dim,lvl)

which realizes the droplet algorithm. Implement the functions

function SQ = sparseQuadrature(dim, lvl, Q),
function SQ = sparseQuadratureNested(dim, lvl, Q),

which evaluate the integral by the sparse grid quadrature formulas (7) and (8). The functions
receive a level lvl, a dimension dim and an one-dimensional quadrature rule stored in Q as
arguments.



Numerical experiments

Exercise 5. Consider the integral

∫
[0,1]

M

(1 + 1/M)
M

M

∏

k=1

x
1/M

k
dx = 1.

Transform the integral to the domain □ and approximate its value by using the sparse grid
combination technique forM = 5 and J = 1, … , 6. The numerical results from [1] should be
used as a reference.

Exercise 6. Consider the problem (3) forM = 5 and with the reference domain, covariance and
right-hand side from Exercise 1. Take EU from data.mat as the reference solution obtained
by quasi-Monte Carlo quadrature with 10

5 samples. Determine the expected solution of the
problem using the different quadrature methods introduced above for J = 1, … , 6. Visualize
the L2-error of the respective expectations with respect to the reference solution against the
number of solved differential equations in a loglog plot. The outcome should look like seen
in Figure 4.

Figure 4: Reference solution (left) and convergence histories of the different quadrature
methods (right).

References

[1] Thomas Gerstner and Michael Griebel. Numerical integration using sparse grids. Numer.
Algorithms, 18(3-4):209–232, 1998.

[2] Astrid Meyer (geb. Fischer). Interpolation von vektorwertigen Funktionen mit adaptiven dünnen
Gittern. Diplomarbeit, Institut für Numerische Simulation, Universität Bonn, 2007.

[3] Alvise Sommariva. Fast Construction of Fejér and Clenshaw-Curtis Rules for General
Weight Functions. Comput. Math. Appl., 65(4):682–693, 2013.


