NXls
|V|Z Universitat
/<IN Basel

High-dimensional approximation methods FS 2025

Prof. Dr. H. Harbrecht

Programming sheet 4. Meeting week!: 26. — 30. May 2025

Hierarchical tensor decomposition

In this sheet, we want to separate the variables by the hierarchical tensor decomposition to
solve the high-dimensional problem.

Let 0 C R? be the unit square and let J € N. We consider the following four-dimensional
problem: find the covariance function Cov[u] € H}(0) ® H{ (o) satisfying

= Cov[f] in oxn,

(1)

(Ax ® Ay) Cov]u]
Cov[u] =0 on a(o x o).

In order to solve (1) numerically, we apply the hierarchical tensor decomposition to the

right-hand side Cov][f](x,y), i.e.,

m T Tk

Z Z Z V(1) ® Wik(xz2) ® vy k(y1) ® Wy k(32).

k=1 j=1 j/=1

Cov|f] ((xl, x2), (1, J’Z)

We can discretize of Laplace operator on O as a second-order tensor by the sum of two
Kronecker products in accordance with

Ay = Axl + sz, Ax,l = Lx1 ® Mxl, Ax,2 = sz ® sz»
where
2 -1 0 0 o0 4 1 0 0 0
-1 2 -1 - 0 1 4 1 0
1170 -1 2 - 10 1 4 :
b 1= - wo-1 oo MeEgl o o @
0 -1 2 -1 0 1
0 O 0 -1 2 0 0 4
Thus, the tensor-product Laplacian is given as the fourth-order tensor
Ay ® Ay = Ax,l ® AyJ + Ax,l ® Ay)g + Ax,z ® Ay,l + Ax,z ® Ay)z
and the right-hand side is given as
m Tk 143
F= Z Z Z M Vi @ My, Wik ® My, Vi o @ My, Wi 3)
k=1 j=1 j=1

In order to solve the problem (1) numerically, we just need to solve the system AU = F.

To work on this sheet, you need to install the Hierarchical Tucker Matlab Toolbox. The manual

and files are found here: HTucker Toolbox.

'If necessary, the deadline can be extended by a week.

https://www.epfl.ch/labs/anchp/index-html/software/htucker/

Figure 1: Variance Var[u](x) = Cov[u](x, x).

Exercise 1. To get the tensor decomposition (3) of the right-hand side, implement a Matlab
function

function [U,V] = ht_decomp(ker, xs, tol),

which returns a 4d htucker tensor function [Phi,Psi]. We intend to approximate the
right-hand side on a uniform product grid on oxo. Itis based on the uniform gridxs = [x1(:), x2(:)1?,
where

[x1, x2] = meshgrid(linspace(0, 1, n), linspace(0, 1, n))

with n=101.

We first compute the decomposition
Cov[f](x,y) = CCT = VS*V'

by the pivoted Cholesky decompostion with tolerance tol = 107°. To this end, compute first
the singular-value decomposition C'C = VSWT. Then set V := CW and matricize each

column V. x — Vi by the function reshape to compute its singular-value decomposition
[V, Sk, Wi] = svd(Vy). Truncate the singular-value decomposition to size r:

ViSkW{ — VIESE(WIE) T,

where ry is the largest index such that Sg(rk,) > tol for k = 1,..., m. Finally, assemble the
matrices V = [V]'S],...,VimSim] and W = [W7, ..., W], which should be output of the
function.

You can test your implementation as folllows:

ker = @(x , y) exp(-((x(1,:)-y(1,:).7).72+(x(2,:)-y(2,:).7).72));
n = 101; tol = 1le-6;

[x1 , x2] = meshgrid (linspace(0 , 1 , n), linspace(0, 1, n));

xs = [x1(:) , x2(:)]7;

K = ker(xs, xs); [V,W] = ht_decomp(ker,xs,tol);

F = htensor ({V, W, V, W});

Af = matricize(full(F),[1,2]);

norm (K-Af ,"fro")

Exercise 2.

Take the same kernel and grid as before. Construct the matrices L and M as given in (2).

Compute the right-hand side F by the function htucker. To solve the partial differential
equation (1), use the following code:

A_handle = handle_lin_mat(L,M);

B_handle handle_inv_mat (L) ;

opts.max_rank = 30; opts.rel_eps = tol;
opts.maxit = 30; opts.tol = O;

opts.plot_conv = false;

[U, ~] = cg_tensor(A_handle, B_handle, F, opts)

Plot the variance of u. It is obtained by using the function matricize and then take the
diagonal.

