
High-dimensional approximation methods
Prof. Dr. H. Harbrecht

FS 2025

Programming sheet 4. Meeting week1: 26. – 30. May 2025

Hierarchical tensor decomposition

In this sheet, we want to separate the variables by the hierarchical tensor decomposition to
solve the high-dimensional problem.

Let □ ⊂ R2 be the unit square and let J ∈ N. We consider the following four-dimensional
problem: find the covariance function Cov[u] ∈ H 1

0 (□) ⊗ H 1
0 (□) satisfying

{
(Δx⊗Δy) Cov[u] = Cov[f] in □ × □,

Cov[u] = 0 on)(□ × □).
(1)

In order to solve (1) numerically, we apply the hierarchical tensor decomposition to the
right-hand side Cov[f](x, y), i.e.,

Cov[f]((x1, x2), (y1, y2)) ≈
m
∑
k=1

rk
∑
j=1

rk
∑
j ′=1

vj ,k(x1) ⊗ wj ,k(x2) ⊗ vj ′,k(y1) ⊗ wj ′,k(y2).

We can discretize of Laplace operator on □ as a second-order tensor by the sum of two
Kronecker products in accordance with

Δx ≈ Ax1 + Ax2 , Ax,1 ∶= Lx1 ⊗Mx1 , Ax,2 ∶= Mx2 ⊗ Lx2 ,

where

Lxi ∶=
1
ℎ2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 0 ⋯ 0 0
−1 2 −1 ⋱ 0
0 −1 2 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ −1 0
0 ⋱ −1 2 −1
0 0 ⋯ 0 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Mxi ∶=
1
6

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 1 0 ⋯ 0 0
1 4 1 ⋱ 0
0 1 4 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 1 0
0 ⋱ 1 4 1
0 0 ⋯ 0 1 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2)

Thus, the tensor-product Laplacian is given as the fourth-order tensor

Δx⊗Δy ≈ Ax,1 ⊗ Ay,1 + Ax,1 ⊗ Ay,2 + Ax,2 ⊗ Ay,1 + Ax,2 ⊗ Ay,2

and the right-hand side is given as

F =
m
∑
k=1

rk
∑
j=1

rk
∑
j ′=1

Mx1Vj ,k ⊗Mx2Wj ,k ⊗My1Vj ′,k ⊗My2Wj ′,k (3)

In order to solve the problem (1) numerically, we just need to solve the system AU = F.

To work on this sheet, you need to install the Hierarchical Tucker Matlab Toolbox. The manual
and files are found here: HTucker Toolbox.

1If necessary, the deadline can be extended by a week.

https://www.epfl.ch/labs/anchp/index-html/software/htucker/

Figure 1: Variance Var[u](x) = Cov[u](x, x).

Exercise 1. To get the tensor decomposition (3) of the right-hand side, implement a Matlab
function

function [U,V] = ht_decomp(ker, xs, tol),

which returns a 4d htucker tensor function [Phi,Psi]. We intend to approximate the
right-hand side on a uniformproduct grid on□×□. It is based on the uniform grid xs = [x1(:), x2(:)]’,
where

[x1, x2] = meshgrid(linspace(0, 1, n), linspace(0, 1, n))

with n=101.

We first compute the decomposition

Cov[f](x, y) ≈ CC⊤ = V̂S2V̂⊤

by the pivoted Cholesky decompostion with tolerance tol = 10−6. To this end, compute first
the singular-value decomposition C⊤C = ṼS̃W̃⊤. Then set V̂ ∶= CW̃ and matricize each
column V̂∶,k → Vk by the function reshape to compute its singular-value decomposition
[Vk, Sk,Wk] = svd(Vk). Truncate the singular-value decomposition to size rk:

VkSkW⊤
k → Vrk

k S
rk
k (W

rk
k)

⊤,

where rk is the largest index such that Sk(rk, rk) > tol for k = 1,… ,m. Finally, assemble the
matrices V = [Vr1

1 S
r1
1 , … , Vrm

m Srmm] and W = [Wr1
1 , … ,Wrm

m], which should be output of the
function.
You can test your implementation as folllows:
ker = @(x , y) exp (-((x(1 ,:) -y(1 ,:).’) .^2+(x(2 ,:) -y(2 ,:).’) .^2));
n = 101; tol = 1e -6;
[x1 , x2] = meshgrid (linspace (0 , 1 , n), linspace (0, 1, n));
xs = [x1 (:) , x2 (:)]’;
K = ker(xs , xs); [V,W] = ht_decomp (ker ,xs ,tol);
F = htensor ({V, W, V, W});
Af = matricize (full(F) ,[1 ,2]);
norm(K-Af ," fro ")

Exercise 2.
Take the same kernel and grid as before. Construct the matrices L and M as given in (2).
Compute the right-hand side F by the function htucker. To solve the partial differential
equation (1), use the following code:
A_handle = handle_lin_mat (L,M);
B_handle = handle_inv_mat (L);
opts. max_rank = 30; opts. rel_eps = tol;
opts.maxit = 30; opts.tol = 0;
opts. plot_conv = false;
[U, ~] = cg_tensor (A_handle , B_handle , F, opts)

Plot the variance of u. It is obtained by using the function matricize and then take the
diagonal.

