NXl/
IVIZ Universitdt High-dimensional approximation methods FS 2025
/IXI\" Basel Prof. Dr. H. Harbrecht

Programming sheet 3. Meeting week: 28. April — 2. May 2025

Sparse grid combination technique

Let D C R? be a bounded and connected domain with boundary dD. We intend to compute
the covariance function Cov{u] € H}(D) ® H}(D) satisfying

{ (A® A) Cov[u](x,y) = Cov|[f](x,y) in Dx D, "

Cov[u](x,y) =0 on d(D x D).

In order to solve (1) numerically, we want to apply the sparse grid combination technique for
level] € N which means we should combine specific solutions of (1) in accordance with

Uy = Z Wjj—j+1 = Wj1,]—j+1s)
j=1

where uj, j, is the solution of
T _
Ajl ujl,jzAjz - fjl,jz' (3)

Since the operator under consideration is of tensor product structure, the sparse grid combina-
tion technique coincides with the Galerkin solution in the sparse grid ansatz space.

While the finite element system matrices A ;, and A, can be computed exactly, it is not obvious
how to compute the right-hand side with sufficient (i.e., finest level) accuracy. To this end,
we shall exploit the sparse grid interpolant of the right-hand side.

Computing the right-hand side

The sparse grid interpolant of Cov[u] on level J is given by

Covlfl,xy) i= Y 3 3 chmtr bt ® $hi®),

Bt i<] ki€Y), ko€Y),

where Y; = {k : xjx ¢ Xj_1} and Xj is a set or relevant triangulation points on the level j.

We can store its coeflicients in the sparse block matrix C; := [c;, ;,]j,+j<7 Where ¢ j, =
[k, k,]k, kyev; v, - To obtain from this interpolant the right-hand sides required in the sparse
grid combination technique, we have to compute expressions of the form

£, = [(CovIFl) fik, © Dk, .-

which involve rectangular finite element mass matrices. We can avoid such matrices by ex-
ploiting restrictions and prolongations. Moreover, the key for an efficient computation is the
use of the identity

vec(Y) = (A® B)vec(X) < Y = BXA'

together with the observation that the order of execution matters in case of rectangular matrices.
A detailed analysis shows that it is most efficient to proceed as follows:

When ji + j; < ji + jo, we compute

J1 ~ . ./
Rj{ Mj{ Cijpr N < Jis

Y= J1~ : -/
MjIPjil Cip it 1> U1
(4)
J T . -/
. - Rngnga J2 < s
T 2 oT y
M Pry's 2>
Otherwise, we compute
I ~T . -/
yi= Ry My €y S
T pl =T . y
M Py €y 2> 02
(5)
REMyy", ji<jf
ZT = N S ’ =Jb

Mjl Pﬁ’ yT’ 1> Jl/

Herein, Rj, is the restriction matrix and P;., is the prolongation matrix for the levels j, j while
the matrices €}, j, are blocks ¢, j, padded to the corresponding levels.

With these block operations, we can compute all right-hand sides i*“\] = [f},j,]j,+j<y required
in the sparse grid combination technique in one run by using the following algorithm in
O(Nj log® Ny) operations.

Algorithm Sparse grid matrix-vector multiplication

Input: matrices Mj, 1 < j < J and and blockwise matrix 6] = [cj)i+ i<y
Output: blockwise matrix F; = [f; ;] +,<-
1: for j1 + jp < J do

2. setf ;, =0
3 forji +j, < Jdo
4 if ji+ 5 < ji+Jj
5 compute z by (4)
6: else
7 compute z by (5)
8 end
9 update fjl,jz = fjl,jz +2z'
10: end
11: end
Exercise 1.

Implement a Matlab function
function fJ = sparse_tensor_product(mgmesh, mass, sparse_interpol, J),
which calculates i:'\] according to the above algorithm. Here, the sparse grid interpolation
sparse_interpol = compute_sparse_interpolation(kf, mgmesh, J)
and the finite element mass matrix
mass = mgsys_assemble (mgmesh) .M

enter. The mesh mgmes is same as in the Programming sheet 2.

Exercise 2.

Implement a Matlab function
function ujlj2 = bivariate_backslash_solver(mgmesh, stiff, £J, j1, j2)

that solves (3) by the backslash operation. Here, £J is obtained by sparse_tensor_product
and

stiff = mgsys_assemble(mgmesh).A.

Exercise 3.

Implement a Matlab function
function uJ = combi_technique(mgmesh, stiff, £fJ, J),

which computes (2). Use bivariate_backslash_solver only for the levels that are needed.

Exercise 4.

To test your implementation compare it with low-rank approximation from the first exercise
sheet. The L?-error should be around zero. Consider the Gaussian covariance

Covgl f1(x,y) = oyl

Also consider the Matérn covariance function with v = 1/2 given by

Covyl Fl(x,y) = e Iyl

What do you observe? In which cases do you think which method is better?

