
High-dimensional approximation methods
Prof. Dr. H. Harbrecht

FS 2025

Programming sheet 3. Meeting week: 28. April – 2. May 2025

Sparse grid combination technique

Let D ⊂ R2 be a bounded and connected domain with boundary )D. We intend to compute
the covariance function Cov[u] ∈ H 1

0 (D) ⊗ H 1
0 (D) satisfying

{
(Δ⊗Δ)Cov[u](x, y) = Cov[f ](x, y) in D × D,

Cov[u](x, y) = 0 on )(D × D).
(1)

In order to solve (1) numerically, we want to apply the sparse grid combination technique for
level J ∈ N which means we should combine specific solutions of (1) in accordance with

ÛJ =

J

∑

j=1

uj ,J−j+1 − uj−1,J−j+1, (2)

where uj1,j2 is the solution of

Aj1uj1,j2A
⊤
j2
= fj1,j2 . (3)

Since the operator under consideration is of tensor product structure, the sparse grid combina-
tion technique coincides with the Galerkin solution in the sparse grid ansatz space.

While the finite element system matricesAj1 andAj2 can be computed exactly, it is not obvious
how to compute the right-hand side with sufficient (i.e., finest level) accuracy. To this end,
we shall exploit the sparse grid interpolant of the right-hand side.

Computing the right-hand side

The sparse grid interpolant of Cov[u] on level J is given by

Ĉov[f ]J (x, y) ∶= ∑

j1+j2≤J

∑

k1∈Yj1

∑

k2∈Yj2

c(j1,j2),(k1,k2)�j1,k2(x) ⊗ �j2,k2(y),

where Yj ∶= {k ∶ xj ,k ∉ Xj−1} and Xj is a set or relevant triangulation points on the level j .
We can store its coefficients in the sparse block matrix ĈJ ∶= [cj1,j2]j1+j2≤J where cj1,j2 =

[ck1,k2]k1,k2∈Yj1 ,Yj2 . To obtain from this interpolant the right-hand sides required in the sparse
grid combination technique, we have to compute expressions of the form

fj1,j2 = [⟨Ĉov[f ]J , �j1,k2 ⊗ �j1,k2⟩]k1,k2
.

which involve rectangular finite element mass matrices. We can avoid such matrices by ex-
ploiting restrictions and prolongations. Moreover, the key for an efficient computation is the
use of the identity

vec(Y) = (A ⊗ B) vec(X) ⟺ Y = BXA
⊤

together with the observation that the order of executionmatters in case of rectangular matrices.
A detailed analysis shows that it is most efficient to proceed as follows:



When j1 + j ′2 ≤ j ′1 + j2, we compute

y ∶=

{
R
j1
j ′1
Mj ′1

c̃j ′1 ,j
′
2
, j1 ≤ j ′1,

Mj1P
j1
j ′1
c̃j ′1 ,j

′
2
, j1 > j ′1,

z ∶=

{
R
j2
j ′2
Mj ′2

y⊤, j2 ≤ j ′2,

Mj2 P
j2
j ′2
y⊤, j2 > j ′2.

(4)

Otherwise, we compute

y ∶=

{
R
j2
j ′2
Mj ′2

c̃⊤
j ′1 ,j

′
2

, j2 ≤ j ′2,

Mj2 P
j2
j ′2
c̃⊤
j ′1 ,j

′
2

, j2 > j ′2,

z
⊤
∶=

{
R
j1
j ′1
Mj ′1

y⊤, j1 ≤ j ′1,

Mj1 P
j1
j ′1
y⊤, j1 > j ′1.

(5)

Herein, Rj

j ′
is the restriction matrix and P

j

j ′
is the prolongation matrix for the levels j , j ′ while

the matrices c̃j1,j2 are blocks cj1,j2 padded to the corresponding levels.

With these block operations, we can compute all right-hand sides F̂J = [fj1,j2]j1+j2≤J required
in the sparse grid combination technique in one run by using the following algorithm in
O(NJ log

3 NJ ) operations.

Algorithm Sparse grid matrix-vector multiplication

Input: matrices Mj , 1 ≤ j ≤ J and and blockwise matrix ĈJ = [cj1,j2]j1+j2≤J .
Output: blockwise matrix F̂J = [fj1,j2]j1+j2≤J .
1: for j1 + j2 ≤ J do
2: set fj1,j2 ∶= 0
3: for j ′1 + j ′2 ≤ J do
4: if j1 + j ′2 ≤ j ′1 + j2
5: compute z by (4)
6: else
7: compute z by (5)
8: end
9: update fj1,j2 = fj1,j2 + z⊤

10: end
11: end

Exercise 1.

Implement a Matlab function

function fJ = sparse_tensor_product(mgmesh, mass, sparse_interpol, J),

which calculates F̂J according to the above algorithm. Here, the sparse grid interpolation

sparse_interpol = compute_sparse_interpolation(kf, mgmesh, J)

and the finite element mass matrix

mass = mgsys_assemble(mgmesh).M

enter. The mesh mgmes is same as in the Programming sheet 2.



Exercise 2.

Implement a Matlab function

function uj1j2 = bivariate_backslash_solver(mgmesh, stiff, fJ, j1, j2)

that solves (3) by the backslash operation. Here, fJ is obtained by sparse_tensor_product
and

stiff = mgsys_assemble(mgmesh).A.

Exercise 3.

Implement a Matlab function

function uJ = combi_technique(mgmesh, stiff, fJ, J),

which computes (2). Use bivariate_backslash_solver only for the levels that are needed.

Exercise 4.

To test your implementation compare it with low-rank approximation from the first exercise
sheet. The L2-error should be around zero. Consider the Gaussian covariance

CovG[f ](x, y) = e
−‖x−y‖22 .

Also consider the Matérn covariance function with � = 1/2 given by

CovM[f ](x, y) = e
−‖x−y‖2 .

What do you observe? In which cases do you think which method is better?


