
High-dimensional approximation methods
Prof. Dr. H. Harbrecht

FS 2025

Programming sheet 2. Meeting week: 31. March – 4. April 2025

Hierarchical interpolation

Let D ⊂ R2 be a bounded and connected domain with boundary )D and let J ∈ N. Consider
the sequence of nested quasi-uniform triangulations with points X0 ⊂ X1 ⊂ ⋯ ⊂ XJ ⊂ D,
where each triangle is dyadically divided into four triangles in each refinement step. Let
Vj ∶= span{�j ,k ∶ 1 ≤ k ≤ Nj }, j = 1, … , J , denote the associated spaces of piecewise linear,
nodal triangular functions such that �j ,k(xj ,�) = �k,�.

The hierarchical interpolant fJ ∈ VJ for a given function f ∈ C(D) is defined as

f (x) ≈ fJ (x) ∶=

J

∑

j=0

∑

k∈Yj

cj ,k�j ,k(x), cj ,k = f (xj ,k) −

f (x
j−1,a(k)

) + f (x
j−1,b(k)

)

2

, (1)

where Yj ∶= {k ∶ xj ,k ∉ Xj−1} and each xj ,k is the midpoint of the edge from x
j−1,a(k)

and
x
j−1,b(k)

. At the initial level, we have c0,k = f (x0,k), k ∈ {k ∶ x0,k ∈ X0}.

Figure 1: Nodal interpolant on first three levels.

Exercise 1. Implement a Matlab function

function cf = compute_multilevel_interpolation(ff, mgmesh, J),

which calculates the coefficients of the hierarchical interpolant (1). Store the coefficients in
the cell array c, i.e., c{j}(k) = cj ,k+nj−1

and nj−1 is the number of points on the previous level.

Exercise 2.

Plot the discretized L∞-norm of contributions norm(c{j}, inf) on the each level up to J = 8

in a semi-log scale. Use mesh = mgmesh_generation(J) to generate a mesh and consider
the function

ff = @(x) cos(2*pi*x(1))*cos(1.5*pi*x(2)).

You should observe a decay with rate 4−j , compare the left plot in Figure 2.



Exercise 3.
To test your implementation, compare the hierarchical interpolant with the standard, nodal
interpolant on the finest level. Consider the same function as in Exercise 2 and compute the
hierarchical interpolant on level J = 8. Transform your multilevel representation to the single
level representation by using the following code:
fj = c{1};
for j=2:J

fj = [fj;c{j}];
Tj = mgmesh .T{j -1};
np1 = mgmesh .np(j -1);
np2 = mgmesh .np(j);
w = Tj*fj (1: np1);
fj(np1 +1: np2) = fj(np1 +1: np2) + w(np1 +1: np2);

end

Compare the transformed interpolant and the nodal interpolant obtained by

fh = compute_nodal_interpolation_mg(ff, mgmesh, J).

The discrete L∞-norm of the error should be around zero.

Sprase grid interpolation

We shall next compute the sparse interpolant for a bivariate function k ∈ C(D × D), given by

k(x, y) ≈
̂
kJ (x, y) ∶= ∑

j1+j2≤J

∑

k1∈Yj
1

∑

k2∈Yj
2

c
(j1,j2),(k1,k2)

�j1,k2
(x) ⊗ �j2,k2

(y) (2)

Exercise 4. Implement a Matlab function

function sck = compute_sparse_interpolation(kf, mgmesh, J),

which calculates the coefficients of the hierarchical interpolant (1) a function in two variables.
Store the coefficients in the cell array sc, i.e., sc{j1,j2}(k1,k2) = c

(j1,j2),(k1+nj
1
−1,k2+nj

2
−1)
,

where nj1−1 and nj2−1 is the number of elements on the previous level j1 and j2, respectively.
Compute the coefficients as sck{j1,j2} = cj12(np11+1:np12, np21+1:np22), where

cj12 =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

khj if j1=1 and j2=1
khj - khj2*Tj2’ if j1=1
khj - Tj1*khj1 if j2=1
khj + Tj1*khj12*Tj2’ - khj2*Tj2’ - Tj1*khj1 else

and

khj = compute_bivariate_nodal_interpolation(kf,mgmesh,j1,j2),

khj1 = compute_bivariate_nodal_interpolation(kf,mgmesh,j1,j2-1),

khj2 = compute_bivariate_nodal_interpolation(kf,mgmesh,j1-1,j2),

khj12 = compute_bivariate_nodal_interpolation(kf,mgmesh,j1-1,j2-1),

Tj1 = mgmesh.T{j1-1}, Tj2 = mgmesh.T{j2-1},

np11 = mgmesh.np(j1-1), np12 = mgmesh.np(j1),

np21 = mgmesh.np(j2-1), np22 = mgmesh.np(j2).

Obviously, np11 = 0 if j1 = 1 and np21 = 0 if j2 = 1. The sparse interpolant (2) is obtained
if one computes only those arrays sck{j1,j2} where j1+j2 <= J. The function

khj = compute_bivariate_nodal_interpolation(kf,mgmesh,j1,j2)

simply calculates the nodal tensor product interpolant on the levels j1, j2.



Exercise 5.

To test your implementation, compute the hierarchical tensor product interpolant, i.e., compute
the arrays sc{j1,j2} for all j1 <= J and j2 <= J. Transform it to the nodal tensor product
interpolant like in Exercise 2. This means, transform it first for one variable and then for the
other variable. Realize this in the function

function kj = transform_hierarchical_to_single(sck, mgmesh, J).

Compute finally the L∞-norm of its difference to the directly computed nodal tensor product
interpolant. This error should be around zero. Test you code for the function

kf = @(x , y) exp(-((x(1)-y(1))^2+(x(2)-y(2))^2)).

The code should work relatively fast up to J = 6 levels.

Exercise 6.

For the function of from the Exercise 5, plot the L2-error ‖kj − ̃
kj ‖L2(D×D) for j = 2, … , 6,

where kj is the nodal tensor product interpolant and ̃kj is the sparse interpolant transformed to the
nodal interpolant by using the function from Exercise 5. The evaluation of the L2-error on
level j requires the mass matrix on level j , which is computed by

M = mgsys_assemble(mgmesh).M{j}.

The L2-error should decay like 4−j j , compare the right plot in Figure 2.

Hinweis. To calculate ‖ ⋅ ‖
L
2
(D×D)

you do not need to compute tensorM ⊗M directly, see Aufgabe 3 in
the Übungsblatt 3.

(a) (b)

Figure 2: (a): Norm of the contributions ‖Qjf ‖L∞(D); (b): Error ‖kj − ̃
kj ‖L2(D×D).


