
High-dimensional approximation methods
Prof. Dr. H. Harbrecht

FS 2025

Programming sheet 1. Meeting week: 3.–7. March 2025

Information on submission

There will be a meeting with the assistant to present the programming exercises. In this meeting,
you must be able to explain your code and answer questions about it. Your code must be uploa-
ded to ADAM by the last Sunday before the meeting week. Start working on the programming
assignments early and do not hesitate to ask questions: viacheslav.karnaev@unibas.ch.

Poisson problem with a random right-hand side

Let D ⊂ R2 be a bounded and connected domain with smooth boundary)D and (
, �,P) be
a complete probability space. For u ∈ L2P(
) ⊗ H 1

0 (D), we consider the following boundary
value problem

{
−Δu(x, !) = f (x, !) in D,

u(x, !) = 0 on)D,

with random right-hand side f ∈ L2P(
) ⊗ L2(D), where ! ∈
 indicates the random event.
In case of u being a Gaussian random field, we can represent it by its Karhunen-Loève expansion

u(x, !) = E[u](x) +
∞

∑

i=1

√
�i�i(x) j(!), (1)

where E[u](x) is the expectation, i.e.,

E[u](x) ∶= ∫

u(x, !) dP(!), x ∈ D,

{ i}
∞
i=1 is a series of independent, standard normally distributed randomvariables, and {(�i, �i(x))}∞i=1

are the normalized eigenpairs of the covariance operator:

Cu⟨�⟩(x) ∶= ∫
D

Cov[u](x, y)�(y) dy = ��(x), x ∈ D. (2)

Here, the function Cov[u] ∶ D × D → R is called the covariance function and defined as

Cov[u](x, y) ∶= ∫

u(x, !)u(y, !) dP(
) − (E[u](x))2, x, y ∈ D.

If we know the expectation E[f] ∈ L2(D), it is easy to get E[u] ∈ H 1
0 (D) as the solution of

the boundary value problem
{
−ΔE[u](x) = E[f](x) in D,

E[u](x) = 0 on)D.
(3)

In the case of covariance, things are more complicated.We can obtain the covarianceCov[u] ∈
H 1
0 (D) ⊗ H 1

0 (D) from the covariance of the right-hand side Cov[f] ∈ L2(D) ⊗ L2(D) by
solving the tensor-product boundary value problem

{
(Δ⊗Δ)Cov[u](x, y) = Cov[f](x, y) in D × D,

Cov[u](x, y) = 0 on)(D × D).
(4)

This is a boundary value problem in R4 and computationally expensive. However, we can
efficiently avoid the high dimensionality by employing a low rank-approximation.

Low-rank approximation

To derive a low-rank approximation, we use the pivoted Cholesky decomposition.We discreti-
ze the covariance Cov[f] by the matrix Cf such that [Cf]i,j = Cov[f](xi, xj), where {xi}ni=1
are the vertices of the underlying finite element mesh. Since the correlation is a symmetric and
positive semidefinite function, the matrix Cov[f] is also symmetric and positive semidefinite.
We can thus apply the following algorithm:

Algorithm Pivoted Cholesky decomposition
Input: covariance function Cov[f] ∶ D × D → R, points x1,… , xn, accuracy tol ≥ 0

Output: L ∈ Rn×m with LLᵀ ≈ Cf , permutation vector p
1: setze p ∶= [1, 2,… , n], d ∶= [Cov[f](xj , xj)]

n

j=1
, � ∶= ‖d‖1, m ∶= 1

2: while m ≤ n and � ≥ tol do
3: set pivot ∶= argmax�∈{m,m+1,…,n} dp�
4: swap ppivot ↔ pm

5: set Lpm, m ∶=
√
dpm

6: set Lpm+1∶n, m ∶= [Cov[f](xpm+1 , xpm),… ,Cov[f](xpn , xpm)]
ᵀ

7: update Lpm+1∶n, m ∶= (Lpm+1∶n, m − Lpm+1∶n,1∶m−1 ⋅ L
ᵀ
pm, 1∶m−1)/Lpm, m

8: update dpm∶n ∶= dpm∶n − [L
2
pm, m

, L2pm+1, m,… , L2pn, m]
ᵀ

9: update � ∶= ‖dpm∶n‖1
10: set m ∶= m + 1

11: end while

Note that the matrix Cf does not need not be completely known for the algorithm to work. It
is sufficient to just provide the elements that enter the computation of the Cholesky factors.
Especially for large matrices, this greatly reduces the memory and computation requirements.

Exercise 1. Implement a Matlab function

function [L, p] = pivoted_cholesky(cov, xs, tol),

which calculates the pivoted Cholesky decomposition. The argument cov is a function
handle, which evaluates a vectorized function Cov[f](x, y). Note that the matrix Cf is never
set up explicitly in the algorithm. The (2 × n)-vector xs specifies the vertices of the mesh and
tol is the termination accuracy.
Test your implementation with the following code, the result of which should be of the order
of 10−10:
cov = @(x , y) exp (-(x(1 ,:) -y(1 ,:) ’).^2 -(x(2 ,:) -y(2 ,:) ’).^2);
[x1 , x2] = meshgrid (linspace (0, 1, 101) , linspace (0, 1, 101));
xs = [x1 (:) , x2 (:)]’;
C = cov(xs , xs);
[L , p] = pivChol (cov , xs , 1e -9);
disp(norm(C - L*L.’, "fro "));

Once we have the low-rank approximation Cf ≈ LLᵀ at hand, we are going to solve AU∶,i =

ML∶,i for each i = 1, 2,… , m. Here,A ∈ Rn×n andM ∈ Rn×n denote the finite element stiffness
and mass matrix, respectively. This leads us directly to the approximation

Cu = [Cov[u](xi, yj)]i,j ≈ UU
ᵀ
.

We hence avoided the solution of the computationally expensive problem (4) in the product
domain D × D.

Exercise 2. Consider the Gaussian covariance

Cov[f](x, y) =
1

√
2��2

e
−‖x−y‖22

2�2 (5)

with correlation length � = 0.4. Generate a mesh by

mesh = mesh_generation().

The vertices of the mesh are then located in mesh.P. Compute the pivoted Cholesky decom-
position with tol=1e-9 and solve for each i the finite element problem AU∶,i = ML∶,i by
using

[uh,~] = solve_poisson_problem(lh, mesh, 1e-9).

Note that the multiplication of L∶,i with the mass matrixMfi is already included in the code.
Plot the mesh function diag(UUᵀ) by using

mesh_function_plot(diag(U*U’), mesh, ’none’).

It corresponds to the variance of the Gaussian random field u(x, !).

Simulation of random fields

In order to obtain the expansion (1), we need to find eigenpairs of the operator Cu. The
Galerkin discretization of the eigenvalue problem (2) yields a generalized eigenvalue problem

MCuMv = �Mv. (6)

We replace Cu by its low-rank approximation to arrive at

MUU
ᵀ
Mv = M

1/2
(M

1/2
UU

ᵀ
M

1/2
)M

1/2
v = �Mv ⟺ M

1/2
UU

ᵀ
M

1/2
v = �v.

Since the (nonzero) eigenvalues of M1/2UUᵀM1/2 are the same as for UᵀMU ∈ Rm×m, it
remains to compute the eigenvalues of the small matrix UᵀMU. As one readily verifies, the
associated eigenvectors v̂1,… , v̂m are related to the original ones by vi = Uv̂i, i = 1,… , m.
Finally, we normalize the eigenvectors: vi ∶= vi/

√
v
ᵀ
iMvi.

Exercise 3. Compute the eigenvalues of the matrixUᵀMU by using the Matlab function eig in
order to approximately solve the generalized eigenvalue problem (6). Obtain the approximate
eigenpairs {�i, vi}mi=1. To get the matrixM, use

[M,~] = assemble_mass_and_stiffness(mesh).

Plot the first four eigenfunctions v1, v2, v3, v4 by using the function mesh_function_plot.

We are now in the position to simulate the discretized random field by evaluating

urand = u0 +

m

∑

i=1

√
�iviri, (7)

where ri ∼ N (0, 1) are independent, standard normally distributed random numbers and u0 is
the finite element solution of (3).

Exercise 4. Consider the right-hand side f with theGaussian covariance (5) and the expectation

ff0 = @(x) 2*cos(2*pi*x(1))*cos(1.5*pi*x(2)).

We discretize this function by means of

fh0 = compute_nodal_interpolation(ff0, mesh).

and compute the expectation u0 by

[uh,~] = solve_poisson_problem(lh, mesh, 1e-9).

Finally, we determine the low-rank approximation of Cf by the pivoted Cholesky decompo-
sition with tol=1e-8 and compute the expression (7) by solving the generalized eigenvalue
problem (6) as described before. Visualize u0 and three random realizations of urand.

