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Abstract

This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations.
Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral
operators. This yields quasi-sparse system matrices which can be compre®$éd;iaelevant matrix

entries without compromising the accuracy of the underlying Galerkin scheme. Hexéity,) denotes

the number of unknowns. The assembly of the compressed system matrix can be perfotMag jn
operations. Therefore, we arrive at an algorithm which solves boundary integral equations within optimal
complexity. By numerical experiments we provide results which corroborate the theory.
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1 Introduction

Various problems in science and engineering can be formulated as boundary integral equations. In gen-
eral, boundary integral equations are solved numerically by the boundary element method (BEM). For
example, BEM is a favourable approach for the treatment of exterior boundary value problems. Never-
theless, traditional discretizations of integral equations suffer from a major disadvantage. The associated
system matrices are densely populated. Therefore, the complexity for solving such equations is at least
O(N3%), whereN,; denotes the number of equations. This fact restricts the maximal size of the linear
equations seriously.

Modern methods for the fast solution of BEM reduce the complexity to a suboptimal rate, i.e.,
O(Njlog™ Ny), or even an optimal rate, i.eQ(N;). Prominent examples for such methods are the

fast multipole methodl6], the panel clustering19] or hierarchical matriceq18, 30]. As introduced

by [1] and improved in [9, 10, 11, 12, 28], wavelet bases offer a further tool for the fast solution of
integral equations. In fact, a Galerkin discretization with wavelet bases results in quasi-sparse matrices,
i.e., the most matrix entries are negligible and can be treated as zero. Discarding these nonrelevant matrix
entries is called matrix compression. It has been shown in [28] that®@fl;) significant matrix entries

remain.

Concerning boundary integral equations, a strong effort has been spent on the construction of appropriate
wavelet bases on surfaces [7, 13, 14, 20, 25, 28]. In order to achieve the optimal complexity of the wavelet
Galerkin scheme, wavelet bases are required with a sufficiently large number of vanishing moments. Our
realization is based on biorthogonal spline wavelets derived from the multiresolution developed in [4].
These wavelets are advantageous since the regularity of the duals is known [31]. Moreover, the duals
are compactly supported which preserves the linear complexity of the fast wavelet transform also for
its inverse. This is an important task for the coupling of FEM and BEM, cf. [21, 22]. Additionally, in
view of the discretization of operators of positive order, for instance, the hypersingular operator, globally
continuous wavelets are available [2, 5, 13, 20].

The efficient computation of the relevant matrix coefficients turned out to be an important task for the
successful application of the wavelet Galerkin method [20, 26, 28]. We present a fully discrete Galerkin
scheme based on numerical quadrature. Supposing that the given manifold is piecewise analytic we can
use ahp-quadrature scheme [20, 28, 29] in combination with exponentially convergent quadrature rules.
This yields an algorithm with asymptotically linear complexity without compromising the accuracy of
the Galerkin scheme.

The outline of the present paper is as follows. First, we introduce the class of problems under consider-
ation. Then, in Section 3 we provide suitable wavelet bases on manifolds. With such bases at hand we
are able to introduce the fully discrete wavelet Galerkin scheme in Section 4. We survey on several prac-
tical issues like setting up the compression pattern, assembling the system matrix and preconditioning.
In Section 5 we present numerical results which confirm our analysis quite well. The accuracy of the
Galerkin scheme is never compromised by the matrix compression.

2 Setting up the Problem

For the numerical approximation of a boundary integral equation we need a discretization method which
ends up with a sufficiently accurate finite-dimensional approximation of the given operator. At first we
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consider a general setting for the boundary element method. Next, a short description of the represen-
tation of the geometry on a computer is given. Then, we discuss the properties for the class of kernel
functions under consideration.

2.1 Boundary integral equations

We consider a boundary integral equation on the closed boundary siirfafca (n + 1)-dimensional
domain(2

(Ap)(x) = /F k(x,y)ply)doy = f(x), xeT. (1)

Herein, the boundary integral operatdrdenotes an operator of the ordgy, that isA : HI(I') —
H~1(T"). Especially we are interested in the case 2.

For the present purpose, we assume that the boudtarR™*! is represented by piecewise parametric
mappings, see Subsection 2.2 for details. The number of different mappings, which is the number of
surface patches, will be denoted By. The surface representation is in contrast to the usual approxi-
mation of the surface by panels. It has the advantage that the rate of convergence is not limited by this
approximation. Notice that technical surfaces generated by CAD tools are represented in this form. Of
course, this fact makes the use of numerical integration indispensable for the computation of the system
matrices.

The properties of the class of kernel functidrix, y) which are under consideration will be outlined in
Subsection 2.3.

2.2 Parametric representation of manifolds

Let O denote the unit-cube, i.e.[J = [0, 1]™. We subdivide the given manifold € R"*+ into several
patches

M

r=JT, Ti=wD), i=12...,M,

i=1
such that each; : O — T; defines a diffeomorphism a&fl ontoT’;. The intersectiod’; N Ty, ¢ # 4/, of
the patche§; andrl'; is supposed to be eith@éor a lower dimensional face. On the leyethe unit cube
is subdivided equidistantlytimes into2’" cubesC; \ C O, wherek = (k1, ... , k,) With 0 < k,,, < 27.
This yields2/" M elementgor elementary domaing); ; x := 7i(C;x) C I';,i = 1,2,..., M. In order
to get a regular mesh @fthe parametric representation is subjected to the following matching condition.
For allx € I'; N I';» exists a bijective, affine mappirg: O — O such thaty;(s) = (v 0 2)(s) = x for
s =[s1,...,s,]T € Owith~;(s) = x, cf. Fig. 1.

The first fundamental tensor of differential geometry is given by the mEfis) € R™*" with

Kis) := {(agz—s(j) 6g;i?))z2(u@n+l)]j,j’1,---7n'

Since~; is supposed to be a diffeomorphism, the maKixs) is symmetric and positive definite. The
canonical inner product in?(T') is given by

M
(u,v)2(r) :/FU(X)U(X)de:Z/DU(%(S))U(%(S)) det (K;(s))ds.
i=1
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Figure 1: The parametrization of the unit sphere is obtained by projecting it onto thé-cllié?, which
yields six patches (left). On the right hand side one figures out the partition on thg levl

The corresponding Sobolev spaces are indicateHH{"). Of course, depending on the global smooth-
ness of the surface, the range of permitéedl R is limited tos € (—sr, sr).

2.3 Kernel Functions and their Properties

We can now specify the kernel functions. To this end, we denotecby (ag,...,a,) andg =
(61,-..,0n) multi-indices of dimensiom and defingla| := a; + ... + «,. Moreover, we denote
by k; i (s, t) the transported kernel functions, that is

ki (s, t) := k(vi(s), v (t))\/det (Ki(s))\/det (K (t)), 1<i,i <M. 2)

Definition 2.1. A kernelk(x,y) is called standard kernel of the ordy, if the partial derivatives of the
transported kernel functioris ;/ (s, t), 1 < ¢,7' < M, are bounded by

—(n+2¢+|of+
1020 ks.1(5,6)| < Cap||ils) — e ()| 720 HIHIAD
provided thatn + 2¢ + |a| + |B] > 0.

We emphasize that this definition requires patchwise smoothnesmbglobal smoothness of the ge-
ometry. The surface itself needs to be only Lipschitz. Generally, under this assumption, the kernel of a
boundary integral operatot of order2q is standard of ordezq. Hence, we may assume this property in

the sequel.

3 Wavelets and multiresolution analysis

Multiresolution is by now a well-studied topic in signal processing. There are many excellent accounts
about it, we refer the reader to the survey paper [6] and the references therein. Here we collect only some
facts which are useful for our purpose.
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In general, a multiresolution analysis consists of a nested family of finite dimensional subspaces
‘/}O CV].OJrl C CVJ C‘/'].Jrl... C ~--CL2(F),

such thatlim V; ~ 27" and

Each spacé/; is defined by a single-scale bagis = {¢;x : k € A;}, i.e.,V; = span®;, where
A, denotes a suitable index set with cardinality;| ~ 2"/. A final requirement is that these bases are
uniformly stable, i.e., for any vectar € (*(A;) holds

lelliza;y ~ 1®j¢ll L2y
uniformly in j. Furthermore, the single-scale bases satisfy a locality condition
diam supp ¢; k ~ 277,

If one is going to use the spacEsas trial spaces for the Galerkin scheme then additional properties are
required. The trial spaces shall hgapproximation) orderl € N andregularity v > 0, that is

vy=sup{s e R:V; C H*(I')},
d=sup{s e R: in;f/ v —vjllo < 277%|v]|s}-
v;EV;

J J

Instead of using only a single-scajethe idea of wavelet concepts is to keep track to increment of
information between two adjacent scajeandj + 1. Sincel; C V;;1 one decomposésgi | = V; ®W;

with some complementary spa®g;, W; N V; = {0}, not necessarily orthogonal 4. Of practical
interest are the bases of the complementary spages V;

\IJJ' = {@Z}j,k ke Vj = Aj+1 \ Aj}.

It is supposed that the collectiofs U ¥; are also uniformly stable basesdf, ;. If

o
v=|J v,
J=jo—1
whereV,_; := ®;,, is a Riesz-basis af,(I") we will call it a wavelet basis. We assume that these basis
functionsy; i are local with respect to the corresponding sgalee.,

diam supp ¢ x ~ 277

and we will normalize them such thi; i || 7, ) ~ 1.

We note that at first glance it would be very convenient to deal with a single orthonormal system of

wavelets. But it was shown in [12, 28] that orthogonal wavelets are not completely appropriate for the

efficient solution of boundary integral equations. For that reason we use biorthogonal wavelet bases.
Then, we have also a biorthogonal, or dual, multiresolution analysis, i.e., dual single-scalépases

{5]‘,1( :k € A;} and waveletsl; = {zf/;J-’k : k € A;} which are coupled to the primal ones via

(®5,2) 2y =1, (95, 9) 2y = L.
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The associated spacks:= span ®; andI¥; := span ¥; satisfy

Vi LW,V LW 3)
Also the dual spaces shall have some ortlerN and regularityy > 0.
Denoting likewise to the primal side

o0 ~ ~
U Wjo—1:= @jo,

J=Jo
then, every € L?(T") has a representation
v= \Tf(v, )2y = ¥(v, \T/)LQ(F)

Moreover, there hold the well known norm equivalences

[l ~ 32 200, E)am i,y tE (T,

= 4)
[ ~ 32 20, ) e,y tE (-77)

Jj=Jjo—1

The relation (3) implies that the wavelets provigmishing momentsr acancellation property

(v, 9550 2] S 277 0] i e o bi)’ (5)
Here\vngm(m = SUD|,_j sen |0%v(z)| denotes the semi-norm WVCIOO(Q). We refer to [6] for
further details.
For the current type of boundary surfadeshe ®;, &)j are generated by constructing first dual pairs of
single-scale bases on the inter{@l1], using B-splines for the primal bases and the dual components
from [4] adapted to the interval [8]. Tensor products yield corresponding dual pairs &fsing the
parametnc liftingsy; and gluing across patch boundaries leads to globally continuous single-scale bases
P, <I> onl, [2, 5, 13, 20]. For B-splines of orderand duals of orded > d such thatl + d is even the
P, <I> have approximation order&d respectively. It is known that the respective regLiIarlty indices
(inside each patch) satisfy= d—1/2 while5y > 0 is known to increase proportionally tb Appropriate
wavelet bases are constructed by projectistadle completiomto the correct complement spaces (see
[3, 13, 28] for details).

4 The Wavelet Galerkin scheme

This section presents a fully discrete wavelet Galerkin scheme for boundary integral equations. In the first
subsection we discretize the given boundary integral equation. In Subsection 4.2 we introduce the a-priori
matrix compression which reduces the relevant matrix coefficients to an asymptotically linear number.
Then, in Subsection 4.3 and Subsection 4.4 we point out the computation of the compressed matrix. Next,
in Subsection 4.5 we introduce an a-posteriori compression which reduces again the number of matrix
coefficients. The last subsection is dedicated to the preconditioning of system matrices which arise from
boundary integral operators of nonzero order.

In the sequel, the collectioWr ; with a capital.J denotes the finite wavelet basis in the sp&gei.e.,

Uy:= U}I;jlo_1 ;. Further,N; := dim Vy ~ 27" indicates the number of unknowns.
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4.1 Discretization

The variational formulation of the given boundary integral equation (1) reads

seekp € HY(I') = (Ap,n)r2r) = (fsm)r2@y V€ HIT). (6)
It is well known, that the variational formulation (6) is equivalent to the boundary integral equation (1),
see e.g. [17, 24] for details.

For the Galerkin scheme we replace the energy sp&é’) in the variational formulation (6) by the
finite dimensional spacéds; introduced in the previous section. Then, we arrive at the problem

seekp; € Vi (Aps.ns)rey = (fins)eeaey Vs €V
Equivalently, due to the finite dimension ©f, the ansatp; = \I/Jp% together with

A? = (A\IIJy \II‘])LQ(F)’ f}b = (f’ \II‘])LQ(F)’

yields the wavelet Galerkin scheme
AlpY = 1Y, 7)

The system matriA‘j is quasi-sparse and might be compresse@(®/;) nonzero matrix entries if the
wavelets have a sufficiently large number of vanishing moments. The remainder of this paper is devoted
to the efficient computation of the system matrix.

Remark 4.1. Replacing the wavelet basis; by the single-scale bas®; yields the traditional single-
scale Galerkin scheme

A = 1.

where A = (AR, ©) 1o ), £9 = (f, ) o aNdpy = & ;p%. This scheme is related to the

wavelet Galerkin scheme by
A =T;ATY,  ph =T, £V =T8,

whereT ; denotes the wavelet transform. The system maﬁfﬁxis densely populated. Therefore, the
costs of solving a given boundary integral equation traditionally in the single-scale basis is at least
O(N7).

4.2 A-priori compression

The discretization of a boundary integral operator H4(I') — H~4(I") by wavelets with a sufficiently

large number of vanishing moments (5) yields quasi-sparse matrices. In a first compression step all
matrix entries, for which the distances of the supports of the corresponding ansatz and test functions are
bigger than a level depending cut-off paraméidgy, are set to zero. In the second compression step also
some of those matrix entries are neglected, for which the corresponding ansatz and test functions have
overlapping supports.
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First, we introduce the abbreviation
O, k := conv hull(supp ¥ k),
Ejk 1= sing supp ¢; k.

Note that©; . denotes the convex hull to the supportygfi, while =, denotes the so-callesingular
supportof 1, x, i.e., those points wherg; i is not smooth.

The compressed system matMJb corresponding to the boundary integral operadds defined by

0, dist (01, O x) > Bjjr, 4,5 > jo,
0, dist (Ej,ka @j’,k’) > B i’ j/ > 7,
(AT Gx).Grae) = . _ v (8)
0, dist (0 x, Ejr ) > B, j>7,
(Ajracs ik 2y Otherwise
Herein, choosing
a,d >1, d<4,8 <d+2q, (9)
the cut-off parameters; ; andB; ,, are set as follows
L 206=9) =G+ (5+d)
B,y = a max {2* min{j,i'} 97 aita) }
(10)

e 200 )= (458" —max{j.j'}d
B; i — a/ max {27 max{7j,j }’ 2 d+2q }

The resulting structure of the compressed matrix is figuratively céitegbr structure cf. Fig. 2. It is
shown in [28] that this compression strategy does not compromise the stability and accuracy of the
underlying Galerkin scheme.

Theorem 4.2. Let the system matriAfﬁ be compressed in accordance wi8), (9) and (10). Then, the
wavelet Galerkin scheme is stable and the error estimate

o = pallg2a—ary S 2~2/(0=a) HpHHd(r) (11)

holds, wherep € H?(T") denotes the exact solution of the given boundary integral equatios: f and
Py = \I/Jp’f,’ is the numerically computed solution, i.Aﬁpqﬁ =fv.

The next theorem shows that the over-all complexity of assembling the compressed system matrix is
O(Ny) even if each entry is weighted by a logarithmical penalty term [20]. We mention that the choice
a = 0 proves that the a-priori compression yiel@$/N ;) relevant matrix entries in the compressed
system matrix.

Theorem 4.3. Let the system matriA¥ = (A, ¥ )2y be compressed according (8), (9) and
(10). The complexity of computing this compressed matriQ (&V;) if the calculation of its entries
(AVjr k. i) 2(r is performed inO([J — 52 ]“) operations with some > 0.
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Figure 2: The finger structure of the compressed system matrix computed with respect to the two dimen-
sional (left) and the three dimensional (right) unit spheres.

4.3 Setting up the compression pattern

In order to compute the matrix compression we cannot check the distance criterion (8) for each matrix
coefficient since this leads t8(N3) functions calls. To realize linear complexity, we exploit the under-
lying tree structure with respect to the supports of the wavelets, to predict negligible matrix coefficients.
We will call a wavelet); 1 son @ SON Oft); father If ©j41,50n € O father-

Lemma 4.4. We consideO; 1 son € O father ANAO /11 son € O father-

1. If
dist (@jiatherv G)j’,father’) > Bj:j/
then there holds

dist (@jJrl,sona Gj’,father’) > B]"H»jl

dlSt (®j+1,SOH7 @j’-i-l,son’) > B]+17]+1l
2. Forj > j' suppose
. —_ /
dist (@j,fathem :j’,father’) > Bj,j/
then we can conclude that
. —_ /
dist (@j+1,son, Dj/,father’) > Bj+l,j’

With the help of this lemma we have to check the distance criteria only for coefficients which stem from
subdivision of calculated coefficients on a coarser level. Therefore, the resulting procedure of checking
the distance criteria is still linear.
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4.4 Assembly of the compressed matrix

Up to this point we know that the compressed system matrix has at®{dét) nonzero entries. Now we
discuss how to compute the relevant matrix coeffici€ms;: x/, ¥ x) 2y in the Galerkin approach.

The matrix entries are given by a double integral over the support of the basis functions, which in the
case of a three-dimensional problem is a doubled two-dimensional integration. Unfortunately even for
cardinal B-splines it is not possible to determine the matrix entries analytically. Therefore we are forced
to compute the matrix coefficients by quadrature rules. This causes an additional error which has to be
controlled and it takes place against a background of realizing asymptotically optimal accuracy while
preserving efficiency. This means that the numerical methods have to be chosen carefully such that the
desired linear complexity of the algorithm is not violated. However, it is not obvious that the complexity

in order to compute the relevant coefficients is still linear. It is an immediate consequence of the fact that
we require only a level dependent precision of quadrature, cf. [20, 28].

Lemma 4.5. Let the error of quadrature for computing the relevant matrix coefficients
(A1, %) r2(ry be bounded by the level dependent accuracy

—2n(J—M

S—
2 ) Tra

ej.y/ ~ min {2—|j—j'|"/2, 2 Tra }2”‘12—2‘1’(‘7—¥) (12)
with somed’ > d and§ € (d, d+ r) from (9). Then, the Galerkin scheme is stable and converges with
the optimal order(11).

From (12) we conclude that the entries on the coarse grids have to be computed with the full accuracy
while the entries on the finer grids are allowed to have less accuracy. Unfortunately, the domains of
integration are very large on coarser scales.

0 0 0 0O DO 0
|19 45[45 19
64_6aleg 64
1945145 19
64 ©64l64 64
0 313 19119 45|45 19|19 313 0
16016 1632 32132 35176 16116
0 313 IOTT945145 19119 313 0
16|16 16 [32 32|32 3216 1616
|19 45[45 19
64_G6aleg 64
[ 19 4ofdo 19
64 64|64 64
0 0 0 00 00 DO 0

Figure 3: The element-based representation of a piecewise linear wavelet with four vanishing moments.

According to the fact that a wavelet is a linear combination of scaling functions the numerical integration
can be reduced to interactions of polynomial shape functions on certain elements. This suggests to em-
ploy an element-based representation of the wavelets like illustrated in Fig. 3 in the case of a piecewise
linear wavelet. Consequently, we have only to deal with integrals of the form

IT; kT jw) = /C / ki (s, t)pi(s)pr (t) dt ds (13)
7,k

Cj/,kl

10
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with p; denoting the polynomial shape functions and the transported kernel function (2). This is quite
similar to the traditional Galerkin discretization. The main difference is that in the wavelet approach the
elements may appear on different levels due to the multilevel hierarchy of wavelet bases.

Difficulties arise if the domains of integration are very close together relatively to their size. We have to
apply numerical integration carefully in order to keep the number of evaluations of the kernel function at
the quadrature knots moderate and to fulfill the assumptions of Theorem 4.3. In [20, 28, 29] a geometri-
cally graded subdivision is proposed in combination with varying polynomial degrees of approximation
in the integration rules, cf. Fig. 4. This provides that the parametric liftipgge analytical. As shown

in [20] the combination of tensor product Gaul3-Legendre quadrature rules with syehuadrature
scheme leads to the number of quadrature points satisfying the assumption of Theorem 4.3-\ith

Tk

Lirjrx

Figure 4: Adaptive subdivision of the domains of integration.

Since the kernel functiokt(x,y) has a singularity on the diagonal = y, we are confronted with
singular integrals if the domains of integration live on the same level and have any points in common. This
situation appears if the underlying elements are identical or share a common edge or vertex. Such singular
integrals can be treated by the so-callrdfy-trick [15, 27], which transform the singular integrands onto
analytical ones.

4.5 A-posteriori compression

Let A : H4(T') — H%I') be a boundary integral operator aﬂdﬁ the associated system matrix
compressed according to Subsection 4.2. If the entries of the compressed systenArﬁetteiye been
computed, we may apply an a-posteriori compression by setting all entries to zero, which are smaller than
a level depending threshold. That way, a maﬁig is obtained which has less nonzero entries than the
matrifof. Clearly, this does not accelerate the calculation of the matrix coefficients. But the requirement
to the memory is reduced if the system matrix has to be stored. For instance, this is advantageous for
the coupling of FEM and BEM, cf. [21, 22]. To our experiences this procedure reduces the number of
nonzero coefficients by a factor 2-5.

Theorem 4.6. We define the a-posteriori compression by

0,67k S €4t

; P
&Y) SN i
Jgaonraey AT o,y

o
G30.0'4) = ) [AY

> 5.

Herein, the level dependent thresheld: is chosen as i1§12) with somed’ > d andé € (d, d+ r) from
(9). Then, the optimal order of convergendd) of the Galerkin scheme is not compromised.

11
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4.6 Wavelet preconditioning

Let A : H1(I') — H4(T") denote a boundary integral operator of the or2ziewith ¢ # 0. Then, the
corresponding system matrjé(ff is ill conditioned. In fact, there holdsnd;» A’j’ ~ 22714l According
to [6, 28], the wavelet approach offers a simple diagonal preconditioner based on the norm equivalences.

Theorem 4.7. Let the diagonal matriD’; defined by

[ T]] (5,k), (5K = 2Tj5j,j’5k,k’a ke Vj, k/ € Vj/, jO -1 < jaj/ < J. (14)

Then, ifA: H1(I') — H4(T") denotes a boundary integral operator of the ordgrwithy > —g¢, the
diagonal matrixD%’ defines a preconditioner tA",, i.e.,

cond;2(D;7AYD;Y) ~ 1.

Remark 4.8. The coefficients on the main diagonalmf satisfy (A, x, %,k)Lz(r) ~ 2247 Therefore,
the above preconditioning can be replaced by a diagonal scaling. In fact, the diagonal scaling improves
and simplifies the wavelet preconditioning.

As the numerical results in [23] confirm, this preconditioning works well in the two dimensional case.
However, in the three dimensions, the results are not satisfactory. One figures out of Fig. 5 the condition
numbers of the stiffness matrices with respect to the single layer operator on a square discretized by
piecewise linears. We employed different constructions for wavelets with four vanishing momets (span-
ning identical spaces, cf. [20] for details). In spite of the preconditioning, the condition numbers with
respect to the wavelets are not significantly better than with respect to the single-scale basis. We mention
that the situation becomes even worse for operators defined on more complicated geometries.

T T T
diagonal scaling: single—scale basis
—&- diagonal scaling: tensor product wavelets
-4~ diagonal scaling: simplified tensor product wavelets
—©- diagonal scaling: wavelets optimized w.r.t. the supports |4
—— modified preconditioner

~condition

—_ L L L L L
1 1.5 2 25 35 4 45 5

3
level J
Figure 5: Thel?-condition numbers with respect to the single layer operator on the unit square and

piecewise linear wavelets with four vanishing moments.

A slight modification of the wavelet preconditioner yields much better results. The simple trick is to
combine the above preconditioner with the mass matrix which yields an appropriate operator based
preconditioning.

12
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Theorem 4.9. We consider a boundary integral operatgr : H%(I') — H~(I") with corresponding
Galerkin matrifoﬁ. LetD’; be defined as i1§14) and BY = (Y, V) r2r) denote the mass matrix.

Then, ify > —¢, the matrixC’’ = DY B% D’ defines a preconditioner t", i.e.,
cond;2 <(C§q)_1/2Af§(C3q)_l/2> ~ 1.

This preconditioner decreases the condition numbers impressively, cf. Fig. 5. Let us remark that the
condition depends on the underlying spaces but not on the chosen wavelet basis. To our experiences the
condition reduces about the factor 10—100 compared to the preconditioner (14).

5 Numerical Results

This section is dedicated to numerical examples in order to confirm our theory. Firstly, we compute a
Dirichlet problem. We use the indirect formulation for the double layer operator which gives a Fred-
holm’s integral equation of the second kind. This is approximated by using piecewise constant wavelets.
Secondly, we solve a Neumann problem employing the indirect formulation for the hypersingular op-
erator. The discretization requires globally continuous piecewise linear wavelets. We mention that both
problems are chosen such that the solutions are known analytically in order to measure the error of
method.

5.1 Dirichlet Problem

For a given functionf € H'/2(I") we consider an interior Dirichlet problem, i.e., we seek H'(Q)
such that

Au=0 in Q,

u=f onl. (15)

The domain is described by the set difference of the clibé, 1]* and three cylinders with radi.5,
cf. Fig. 6. The boundary is parametrized vid8 patches. Choosing the harmonical polynomial

u(x) = 4a? — 3y* — 2*

and settingf := u|r the problem (15) has the unique solutien

We employ thadouble layer operator

1 0 1

which yields a Fredholm integral equation of the second kind
(K—4iI)p=f onl

for the unknown density. The solutiornu of the Dirichlet problem is derived by application of the double
layer operator to this density, i.e.,

u=~Kp inQ. a7
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Figure 6: The mesh on the surfaceand the evaluation points; of the potential.

The operator on the left hand side of (16) defines an operator of the order 0. We discretize this equation by
piecewise constant wavelets with three vanishing moments which is in accordance with (9). The discrete
solutions are denoted by

ui= [ulx)], uf = [(Kp))x)], uf = [(KpY)(xi)], (18)

where the evaluation points are specified in Fig. 6. Herein,? indicates the approximation computed
by the traditional Galerkin scheme whiig, stands for the numerical solution of the wavelet Galerkin
scheme.

In Tab. 1 we list the maximum norm of the absolute erroraptndu’;. The columns titled by “contr.”
(contraction) contain the ratio of the absolute error obtained on the previous level divided by the present
absolute error. The optimal order of convergence is quadratic which implies a contraction close to 4.
As the results in Tab. 1 confirm, the precisions of the single-scale and the compressed wavelet Galerkin
scheme are rather similar.

unknowns| scaling functiong)(!) waveletsy)(1:3)

J| Ny ||u—u?||oo contr. ||u—uf§||0O contr.
1 192 1.9 — 2.6 —
2 768 3.3e-1 4.0 4.1e-1 6.2
3| 3072 5.7e-2 4.4 6.6e-2 6.2
4| 12288 (1.4e2) | 40) | 13e2 | 50
5|49152| (3.6e3) | (4.0) | 3.3e3 | 4.0

Table 1: The maximum norm of the absolute errors of the discrete potential.

Fig. 7 is concerned with the rates of compression (left) and the computing times (right). We measure the
rates of compression by the ratio (in %) of the number of nonzero matrix coefficienf8 arbr N, =
49152 unknows only).78% of the matrix coefficients are relevant. After the a-posteriori compression this
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number is even reduced®ol 5%. In the plot on the right hand side of Fig. 7 one finds a comparison of the
over-all computing times of the traditional and the fast wavelet discretization. Note that we extrapolated
the computing times of the traditional scheme to the levels 4 and 5Njoe= 49152 we obtain the
speed-up factor1.4 in comparison with the single-scale scheme.

Matrix compression
: : :

Computing times

.
-~ linear behaviour s—o scaling functions (0(1)
- L—b i 10°F o oa (1.3)
g a-priori compression - &—4 wavelets Y™
5 £ €2 a-posteriori compression 3
o 310" B’ £
£ ~A_ £
12
< g 3
5 _ € 10° 4
9 10’ k ~ = =g ’
£ )
- ) £ ey
3 ~ 210 oy
x
£ AL £ //
T ™ 8 -
g o S e
~ =
g 10° ~ ¢ 10 =
g g -~
2 1004 7
107k . . . . . . . E 107 . . . . . .
1 15 2 25 3 35 4 4.5 5 1 15 2 25 3 35 4 45 5
level J level J

Figure 7: The compression rates and computing times.

5.2 Neumann Problem

For a given functiory € H~/(T") with Jr 9(x)dox = 0 we treat a Neumann problem on the domain
Q, that is, we seek € H'(Q) such that

Au=0 inQ,

ou

The domainQ under consideration is described as the union of two sphgré®, 0, +-2]7) and one
connecting cylinder with the radius 0.5, compare Fig. 8. The bouriddsyrepresented via 14 patches.
Choosing the harmonical function

(a,x —b)

u(x) = I a=[1,2,4",

b =[1,0,0]T, (20)

and setting; := 85%

the Neumann problem has the solutiomodulo a constant.
Thehypersingular operatodV is given by

1 9 0 1
= —_—— d F
W00 = = o [ el oy, xeT,

and defines an operator of ordet. In order to solve problem (19) we seek the dengisatisfying the
Fredholm integral equation of the first kind

Wp=g¢g onl. (22)

Since W is symmetric and positive semidefinite, cf. [17, 24], one restrictby the constraint
fF p(x)dox = 0. We emphasize that the discretization of the hypersingular operator reglotesly
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e/

Figure 8: The mesh on the surfaceand the evaluation points; of the potential.

continuouspiecewise linear wavelets. According to (9) piecewise linear wavelets have to provide two
vanishing moments.

The densityp given by the boundary integral equation (21) leads to the solutiafi the Neumann
problem by application of the double layer operator according to (17). The discrete counterparts are
denoted as in (18), where the evaluation poigtare specified in Fig. 8.

First, we compare the errors of approximation with respect to the discrete potentials. The order of con-
vergence is cubic (contraction 8) if the density is sufficiently smooth. The results in Tab. 2 suggest even a
higher rate of convergence. But asymptotically one expects an order of convergence less than cubic due

to concave angles between the patches. The wavelet Galerkin scheme achieves the same accuracy as the
traditional Galerkin scheme.

unknowns| scaling functiong(?) waveletsy (3:2)

J| Nyo|us = | contr.| lu; —uf]w | contr.
1 58 7.1 — 7.6 —

2| 226 4.3 14 4.2 1.8

3| 898 1.2 3.6 1.2 35

4 | 3586 1.9e-1 6.3 1.9e-1 6.2

514338 (2.4e-2) | (8.0)| 1.4e-2 14

6 | 57346 (3.0e-3) | (80)| 4.8e-4 30

Table 2: The maximum norm of the absolute errors of the discrete potential.

Next, we visualize again the rates of compression and computing times, see Fig. 9. On the left hand side
we plot the number of nonzero coefficients in percent. Fer= 57346 unknowns the matrix compres-
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sion yields only 1.37 % and 0.73 % relevant matrix entries after a-priori and a-posteriori compression,
respectively. On the right hand side one figures out the over-all computing times. We extrapolated the
computing times of the traditional scheme to the levels 5 and 6. On level 6 the speed-up of the wavelet
Galerkin scheme is about the factor 11 compared to the traditional scheme.

Matrix compression Computing times

-~ linear behaviour % scaling functions (p(z)

.
4= a—priori compression 10" F 42 wavelets %2 -

H
S
s
|
|
|
|
|
|
|
|
>

"~ 9 a—posteriori compression

e
Q.

8:
over-all computing times in second
B
5

nonzero matrix coefficients in per cent

107k . . . . . . . L E 107 . . . .
1 15 2 25 3 4 45 5 55 6 1 15 2 25 3

L L L L
4 45 5 55 6

35 35
level J level J

Figure 9: The compression rates and computing times.
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