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Abstract
This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations.
Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral
operators. This yields quasi-sparse system matrices which can be compressed toO(NJ) relevant matrix
entries without compromising the accuracy of the underlying Galerkin scheme. Herein,O(NJ) denotes
the number of unknowns. The assembly of the compressed system matrix can be performed inO(NJ)
operations. Therefore, we arrive at an algorithm which solves boundary integral equations within optimal
complexity. By numerical experiments we provide results which corroborate the theory.
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1 Introduction

Various problems in science and engineering can be formulated as boundary integral equations. In gen-
eral, boundary integral equations are solved numerically by the boundary element method (BEM). For
example, BEM is a favourable approach for the treatment of exterior boundary value problems. Never-
theless, traditional discretizations of integral equations suffer from a major disadvantage. The associated
system matrices are densely populated. Therefore, the complexity for solving such equations is at least
O(N2

J ), whereNJ denotes the number of equations. This fact restricts the maximal size of the linear
equations seriously.

Modern methods for the fast solution of BEM reduce the complexity to a suboptimal rate, i.e.,
O(NJ logαNJ), or even an optimal rate, i.e.,O(NJ). Prominent examples for such methods are the
fast multipole method[16], thepanel clustering[19] or hierarchical matrices[18, 30]. As introduced
by [1] and improved in [9, 10, 11, 12, 28], wavelet bases offer a further tool for the fast solution of
integral equations. In fact, a Galerkin discretization with wavelet bases results in quasi-sparse matrices,
i.e., the most matrix entries are negligible and can be treated as zero. Discarding these nonrelevant matrix
entries is called matrix compression. It has been shown in [28] that onlyO(NJ) significant matrix entries
remain.

Concerning boundary integral equations, a strong effort has been spent on the construction of appropriate
wavelet bases on surfaces [7, 13, 14, 20, 25, 28]. In order to achieve the optimal complexity of the wavelet
Galerkin scheme, wavelet bases are required with a sufficiently large number of vanishing moments. Our
realization is based on biorthogonal spline wavelets derived from the multiresolution developed in [4].
These wavelets are advantageous since the regularity of the duals is known [31]. Moreover, the duals
are compactly supported which preserves the linear complexity of the fast wavelet transform also for
its inverse. This is an important task for the coupling of FEM and BEM, cf. [21, 22]. Additionally, in
view of the discretization of operators of positive order, for instance, the hypersingular operator, globally
continuous wavelets are available [2, 5, 13, 20].

The efficient computation of the relevant matrix coefficients turned out to be an important task for the
successful application of the wavelet Galerkin method [20, 26, 28]. We present a fully discrete Galerkin
scheme based on numerical quadrature. Supposing that the given manifold is piecewise analytic we can
use ahp-quadrature scheme [20, 28, 29] in combination with exponentially convergent quadrature rules.
This yields an algorithm with asymptotically linear complexity without compromising the accuracy of
the Galerkin scheme.

The outline of the present paper is as follows. First, we introduce the class of problems under consider-
ation. Then, in Section 3 we provide suitable wavelet bases on manifolds. With such bases at hand we
are able to introduce the fully discrete wavelet Galerkin scheme in Section 4. We survey on several prac-
tical issues like setting up the compression pattern, assembling the system matrix and preconditioning.
In Section 5 we present numerical results which confirm our analysis quite well. The accuracy of the
Galerkin scheme is never compromised by the matrix compression.

2 Setting up the Problem

For the numerical approximation of a boundary integral equation we need a discretization method which
ends up with a sufficiently accurate finite-dimensional approximation of the given operator. At first we
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consider a general setting for the boundary element method. Next, a short description of the represen-
tation of the geometry on a computer is given. Then, we discuss the properties for the class of kernel
functions under consideration.

2.1 Boundary integral equations

We consider a boundary integral equation on the closed boundary surfaceΓ of a (n + 1)-dimensional
domainΩ

(Aρ)(x) =
∫

Γ
k(x,y)ρ(y)dσy = f(x), x ∈ Γ. (1)

Herein, the boundary integral operatorA denotes an operator of the order2q, that isA : Hq(Γ) →
H−q(Γ). Especially we are interested in the casen = 2.

For the present purpose, we assume that the boundaryΓ ∈ Rn+1 is represented by piecewise parametric
mappings, see Subsection 2.2 for details. The number of different mappings, which is the number of
surface patches, will be denoted byM . The surface representation is in contrast to the usual approxi-
mation of the surface by panels. It has the advantage that the rate of convergence is not limited by this
approximation. Notice that technical surfaces generated by CAD tools are represented in this form. Of
course, this fact makes the use of numerical integration indispensable for the computation of the system
matrices.

The properties of the class of kernel functionsk(x,y) which are under consideration will be outlined in
Subsection 2.3.

2.2 Parametric representation of manifolds

Let� denote the unitn-cube, i.e.,� = [0, 1]n. We subdivide the given manifoldΓ ∈ Rn+1 into several
patches

Γ =
M⋃
i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M,

such that eachγi : � → Γi defines a diffeomorphism of� ontoΓi. The intersectionΓi ∩ Γi′ , i 6= i′, of
the patchesΓi andΓi′ is supposed to be either∅ or a lower dimensional face. On the levelj, the unit cube
is subdivided equidistantlyj times into2jn cubesCj,k ⊆ �, wherek = (k1, . . . , kn) with 0 ≤ km < 2j .
This yields2jnM elements(or elementary domains)Γi,j,k := γi(Cj,k) ⊆ Γi, i = 1, 2, . . . ,M . In order
to get a regular mesh ofΓ the parametric representation is subjected to the following matching condition.
For allx ∈ Γi ∩ Γi′ exists a bijective, affine mappingΞ : �→ � such thatγi(s) = (γi′ ◦ Ξ)(s) = x for
s = [s1, . . . , sn]T ∈ � with γi(s) = x, cf. Fig. 1.

The first fundamental tensor of differential geometry is given by the matrixKi(s) ∈ Rn×n with

Ki(s) :=
[(∂γi(s)

∂sj
,
∂γi(s)
∂sj′

)
l2(Rn+1)

]
j,j′=1,... ,n

.

Sinceγi is supposed to be a diffeomorphism, the matrixKi(s) is symmetric and positive definite. The
canonical inner product inL2(Γ) is given by

(u, v)L2(Γ) =
∫

Γ
u(x)v(x)dσx =

M∑
i=1

∫
�
u
(
γi(s)

)
v
(
γi(s)

)√
det
(
Ki(s)

)
ds.
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Figure 1: The parametrization of the unit sphere is obtained by projecting it onto the cube[−1, 1]3, which
yields six patches (left). On the right hand side one figures out the partition on the levelj = 4.

The corresponding Sobolev spaces are indicated byHs(Γ). Of course, depending on the global smooth-
ness of the surface, the range of permitteds ∈ R is limited tos ∈ (−sΓ, sΓ).

2.3 Kernel Functions and their Properties

We can now specify the kernel functions. To this end, we denote byα = (α1, . . . , αn) andβ =
(β1, . . . , βn) multi-indices of dimensionn and define|α| := α1 + . . . + αn. Moreover, we denote
by ki,i′(s, t) the transported kernel functions, that is

ki,i′(s, t) := k
(
γi(s), γi′(t)

)√
det
(
Ki(s)

)√
det
(
Ki′(t)

)
, 1 ≤ i, i′ ≤M. (2)

Definition 2.1. A kernelk(x,y) is called standard kernel of the order2q, if the partial derivatives of the
transported kernel functionski,i′(s, t), 1 ≤ i, i′ ≤M , are bounded by∣∣∂αs ∂βt ki,i′(s, t)

∣∣ ≤ cα,β∥∥γi(s)− γi′(t)
∥∥−(n+2q+|α|+|β|)

provided thatn+ 2q + |α|+ |β| > 0.

We emphasize that this definition requires patchwise smoothness butnot global smoothness of the ge-
ometry. The surface itself needs to be only Lipschitz. Generally, under this assumption, the kernel of a
boundary integral operatorA of order2q is standard of order2q. Hence, we may assume this property in
the sequel.

3 Wavelets and multiresolution analysis

Multiresolution is by now a well-studied topic in signal processing. There are many excellent accounts
about it, we refer the reader to the survey paper [6] and the references therein. Here we collect only some
facts which are useful for our purpose.
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In general, a multiresolution analysis consists of a nested family of finite dimensional subspaces

Vj0 ⊂ Vj0+1 ⊂ · · · ⊂ Vj ⊂ Vj+1 · · · ⊂ · · · ⊂ L2(Γ),

such thatdimVj ∼ 2jn and ⋃
j≥j0

Vj = L2(Γ).

Each spaceVj is defined by a single-scale basisΦj = {φj,k : k ∈ ∆j}, i.e., Vj = span Φj , where
∆j denotes a suitable index set with cardinality|∆j | ∼ 2nj . A final requirement is that these bases are
uniformly stable, i.e., for any vectorc ∈ l2(∆j) holds

‖c‖l2(∆j) ∼ ‖Φjc‖L2(Γ)

uniformly in j. Furthermore, the single-scale bases satisfy a locality condition

diam suppφj,k ∼ 2−j .

If one is going to use the spacesVj as trial spaces for the Galerkin scheme then additional properties are
required. The trial spaces shall have(approximation) orderd ∈ N andregularityγ > 0, that is

γ = sup{s ∈ R : Vj ⊂ Hs(Γ)},
d = sup{s ∈ R : inf

vj∈Vj
‖v − vj‖0 . 2−js‖v‖s}.

Instead of using only a single-scalej the idea of wavelet concepts is to keep track to increment of
information between two adjacent scalesj andj+1. SinceVj ⊂ Vj+1 one decomposesVj+1 = Vj⊕Wj

with some complementary spaceWj , Wj ∩ Vj = {0}, not necessarily orthogonal toVj . Of practical
interest are the bases of the complementary spacesWj in Vj+1

Ψj = {ψj,k : k ∈ ∇j = ∆j+1 \∆j}.

It is supposed that the collectionsΦj ∪Ψj are also uniformly stable bases ofVj+1. If

Ψ =
∞⋃

j=j0−1

Ψj ,

whereΨj0−1 := Φj0 , is a Riesz-basis ofL2(Γ) we will call it a wavelet basis. We assume that these basis
functionsψj,k are local with respect to the corresponding scalej, i.e.,

diam suppψj,k ∼ 2−j

and we will normalize them such that‖ψj,k‖L2(Γ) ∼ 1.

We note that at first glance it would be very convenient to deal with a single orthonormal system of
wavelets. But it was shown in [12, 28] that orthogonal wavelets are not completely appropriate for the
efficient solution of boundary integral equations. For that reason we use biorthogonal wavelet bases.
Then, we have also a biorthogonal, or dual, multiresolution analysis, i.e., dual single-scale basesΦ̃j =
{φ̃j,k : k ∈ ∆j} and wavelets̃Ψj = {ψ̃j,k : k ∈ ∆j} which are coupled to the primal ones via

(Φj , Φ̃j)L2(Γ) = I, (Ψj , Ψ̃j)L2(Γ) = I.

5



H. Harbrecht and R. Schneider

The associated spacesṼj := span Φ̃j andW̃j := span Ψ̃j satisfy

Vj ⊥ W̃j , Ṽj ⊥Wj . (3)

Also the dual spaces shall have some orderd̃ ∈ N and regularitỹγ > 0.

Denoting likewise to the primal side

Ψ̃ =
∞⋃

j=j0−1

Ψ̃j , Ψ̃j0−1 := Φ̃j0 ,

then, everyv ∈ L2(Γ) has a representation

v = Ψ̃(v,Ψ)L2(Γ) = Ψ(v, Ψ̃)L2(Γ)

Moreover, there hold the well known norm equivalences

‖v‖2t ∼
∞∑

j=j0−1

22jt‖(v, Ψ̃j)L2(Γ)‖2l2(∇j), t ∈ (−γ̃, γ),

‖v‖2t ∼
∞∑

j=j0−1

22jt‖(v,Ψj)L2(Γ)‖2l2(∇j), t ∈ (−γ, γ̃).
(4)

The relation (3) implies that the wavelets providevanishing momentsor acancellation property

|(v, ψj,k)L2(Γ)| . 2−j(d̃+n/2)|v|
W d̃,∞(suppψj,k)

. (5)

Here |v|
W d̃,∞(Ω)

:= sup|α|=d̃, x∈Ω
|∂αv(x)| denotes the semi-norm inW d̃,∞(Ω). We refer to [6] for

further details.

For the current type of boundary surfacesΓ theΦj , Φ̃j are generated by constructing first dual pairs of
single-scale bases on the interval[0, 1], using B-splines for the primal bases and the dual components
from [4] adapted to the interval [8]. Tensor products yield corresponding dual pairs on�. Using the
parametric liftingsγi and gluing across patch boundaries leads to globally continuous single-scale bases
Φj , Φ̃j onΓ, [2, 5, 13, 20]. For B-splines of orderd and duals of order̃d ≥ d such thatd+ d̃ is even the
Φj , Φ̃j have approximation ordersd, d̃, respectively. It is known that the respective regularity indicesγ, γ̃

(inside each patch) satisfyγ = d−1/2 while γ̃ > 0 is known to increase proportionally tõd. Appropriate
wavelet bases are constructed by projecting astable completioninto the correct complement spaces (see
[3, 13, 28] for details).

4 The Wavelet Galerkin scheme

This section presents a fully discrete wavelet Galerkin scheme for boundary integral equations. In the first
subsection we discretize the given boundary integral equation. In Subsection 4.2 we introduce the a-priori
matrix compression which reduces the relevant matrix coefficients to an asymptotically linear number.
Then, in Subsection 4.3 and Subsection 4.4 we point out the computation of the compressed matrix. Next,
in Subsection 4.5 we introduce an a-posteriori compression which reduces again the number of matrix
coefficients. The last subsection is dedicated to the preconditioning of system matrices which arise from
boundary integral operators of nonzero order.

In the sequel, the collectionΨJ with a capitalJ denotes the finite wavelet basis in the spaceVJ , i.e.,
ΨJ :=

⋃J−1
j=j0−1 Ψj . Further,NJ := dimVJ ∼ 2Jn indicates the number of unknowns.
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4.1 Discretization

The variational formulation of the given boundary integral equation (1) reads

seekρ ∈ Hq(Γ) : (Aρ, η)L2(Γ) = (f, η)L2(Γ) ∀ η ∈ Hq(Γ). (6)

It is well known, that the variational formulation (6) is equivalent to the boundary integral equation (1),
see e.g. [17, 24] for details.

For the Galerkin scheme we replace the energy spaceHq(Γ) in the variational formulation (6) by the
finite dimensional spacesVJ introduced in the previous section. Then, we arrive at the problem

seekρJ ∈ VJ : (AρJ , ηJ)L2(Γ) = (f, ηJ)L2(Γ) ∀ ηJ ∈ VJ .

Equivalently, due to the finite dimension ofVJ , the ansatzρJ = ΨJρ
ψ
J together with

Aψ
J :=

(
AΨJ ,ΨJ

)
L2(Γ)

, fψJ :=
(
f,ΨJ

)
L2(Γ)

,

yields the wavelet Galerkin scheme

Aψ
Jρ

ψ
J = fψJ . (7)

The system matrixAψ
J is quasi-sparse and might be compressed toO(NJ) nonzero matrix entries if the

wavelets have a sufficiently large number of vanishing moments. The remainder of this paper is devoted
to the efficient computation of the system matrix.

Remark 4.1. Replacing the wavelet basisΨJ by the single-scale basisΦJ yields the traditional single-
scale Galerkin scheme

Aφ
Jρ

φ
J = fφJ ,

whereAφ
J :=

(
AΦJ ,ΦJ

)
L2(Γ)

, fφJ :=
(
f,ΦJ

)
L2(Γ)

and ρJ = ΦJρ
φ
J . This scheme is related to the

wavelet Galerkin scheme by

Aψ
J = TJAφ

JTT
J , µψJ = T−TJ µφJ , fψJ = TJ fφJ ,

whereTJ denotes the wavelet transform. The system matrixAφ
J is densely populated. Therefore, the

costs of solving a given boundary integral equation traditionally in the single-scale basis is at least
O(N2

J ).

4.2 A-priori compression

The discretization of a boundary integral operatorA : Hq(Γ)→ H−q(Γ) by wavelets with a sufficiently
large number of vanishing moments (5) yields quasi-sparse matrices. In a first compression step all
matrix entries, for which the distances of the supports of the corresponding ansatz and test functions are
bigger than a level depending cut-off parameterBj,j′ , are set to zero. In the second compression step also
some of those matrix entries are neglected, for which the corresponding ansatz and test functions have
overlapping supports.
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First, we introduce the abbreviation

Θj,k := conv hull(suppψj,k),

Ξj,k := sing suppψj,k.

Note thatΘj,k denotes the convex hull to the support ofψj,k while Ξj,k denotes the so-calledsingular
supportof ψj,k, i.e., those points whereψj,k is not smooth.

The compressed system matrixAψ
J corresponding to the boundary integral operatorA is defined by

[Aψ
J ](j,k),(j′,k′) :=


0, dist

(
Θj,k,Θj′,k′

)
> Bj,j′ , j, j′ ≥ j0,

0, dist
(
Ξj,k,Θj′,k′

)
> B′j,j′ , j′ > j,

0, dist
(
Θj,k,Ξj′,k′

)
> B′j,j′ , j > j′,(

Aψj′,k′ , ψj,k
)
L2(Γ)

, otherwise.

(8)

Herein, choosing

a, a′ > 1, d < δ, δ′ < d̃+ 2q, (9)

the cut-off parametersBj,j′ andB′j,j′ are set as follows

Bj,j′ = a max
{

2−min{j,j′}, 2
2J(δ−q)−(j+j′)(δ+d̃)

2(d̃+q)

}
,

B′j,j′ = a′max
{

2−max{j,j′}, 2
2J(δ′−q)−(j+j′)δ′−max{j,j′}d̃

d̃+2q

}
.

(10)

The resulting structure of the compressed matrix is figuratively calledfinger structure, cf. Fig. 2. It is
shown in [28] that this compression strategy does not compromise the stability and accuracy of the
underlying Galerkin scheme.

Theorem 4.2. Let the system matrixAψ
J be compressed in accordance with(8), (9) and (10). Then, the

wavelet Galerkin scheme is stable and the error estimate

‖ρ− ρJ‖H2q−d(Γ) . 2−2J(d−q)∥∥ρ∥∥
Hd(Γ)

(11)

holds, whereρ ∈ Hd(Γ) denotes the exact solution of the given boundary integral equationAρ = f and
ρJ = ΨJρ

ψ
J is the numerically computed solution, i.e.,Aψ

Jρ
ψ
J = fψ.

The next theorem shows that the over-all complexity of assembling the compressed system matrix is
O(NJ) even if each entry is weighted by a logarithmical penalty term [20]. We mention that the choice
α = 0 proves that the a-priori compression yieldsO(NJ) relevant matrix entries in the compressed
system matrix.

Theorem 4.3. Let the system matrixAψ
J = (AΨJ ,ΨJ)L2(Γ) be compressed according to(8), (9) and

(10). The complexity of computing this compressed matrix isO(NJ) if the calculation of its entries
(Aψj′,k′ , ψj,k)L2(Γ) is performed inO

([
J − j+j′

2

]α)
operations with someα ≥ 0.

8
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Figure 2: The finger structure of the compressed system matrix computed with respect to the two dimen-
sional (left) and the three dimensional (right) unit spheres.

4.3 Setting up the compression pattern

In order to compute the matrix compression we cannot check the distance criterion (8) for each matrix
coefficient since this leads toO(N2

J ) functions calls. To realize linear complexity, we exploit the under-
lying tree structure with respect to the supports of the wavelets, to predict negligible matrix coefficients.
We will call a waveletψj+1,son a son ofψj,father if Θj+1,son ⊆ Θj,father.

Lemma 4.4. We considerΘj+1,son ⊆ Θj,father andΘj′+1,son ⊆ Θj′,father.

1. If

dist
(
Θj,father,Θj′,father′

)
> Bj,j′

then there holds

dist
(
Θj+1,son,Θj′,father′

)
> Bj+1,j′

dist
(
Θj+1,son,Θj′+1,son′

)
> Bj+1,j+1′ .

2. For j > j′ suppose

dist
(
Θj,father,Ξj′,father′

)
> B′j,j′

then we can conclude that

dist
(
Θj+1,son,Ξj′,father′

)
> B′j+1,j′

With the help of this lemma we have to check the distance criteria only for coefficients which stem from
subdivision of calculated coefficients on a coarser level. Therefore, the resulting procedure of checking
the distance criteria is still linear.

9
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4.4 Assembly of the compressed matrix

Up to this point we know that the compressed system matrix has at mostO(NJ) nonzero entries. Now we
discuss how to compute the relevant matrix coefficients(Aψj′,k′ , ψj,k)L2(Γ) in the Galerkin approach.
The matrix entries are given by a double integral over the support of the basis functions, which in the
case of a three-dimensional problem is a doubled two-dimensional integration. Unfortunately even for
cardinal B-splines it is not possible to determine the matrix entries analytically. Therefore we are forced
to compute the matrix coefficients by quadrature rules. This causes an additional error which has to be
controlled and it takes place against a background of realizing asymptotically optimal accuracy while
preserving efficiency. This means that the numerical methods have to be chosen carefully such that the
desired linear complexity of the algorithm is not violated. However, it is not obvious that the complexity
in order to compute the relevant coefficients is still linear. It is an immediate consequence of the fact that
we require only a level dependent precision of quadrature, cf. [20, 28].

Lemma 4.5. Let the error of quadrature for computing the relevant matrix coefficients
(Aψj′,k′ , ψj,k)L2(Γ) be bounded by the level dependent accuracy

εj,j′ ∼ min
{

2−|j−j
′|n/2, 2

−2n(J− j+j
′

2
) δ−q
d̃+q

}
22Jq2−2d′(J− j+j

′
2

) (12)

with somed′ > d andδ ∈ (d, d̃ + r) from (9). Then, the Galerkin scheme is stable and converges with
the optimal order(11).

From (12) we conclude that the entries on the coarse grids have to be computed with the full accuracy
while the entries on the finer grids are allowed to have less accuracy. Unfortunately, the domains of
integration are very large on coarser scales.
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Figure 3: The element-based representation of a piecewise linear wavelet with four vanishing moments.

According to the fact that a wavelet is a linear combination of scaling functions the numerical integration
can be reduced to interactions of polynomial shape functions on certain elements. This suggests to em-
ploy an element-based representation of the wavelets like illustrated in Fig. 3 in the case of a piecewise
linear wavelet. Consequently, we have only to deal with integrals of the form

I(Γi,j,k,Γi′,j′,k′) :=
∫
Cj,k

∫
Cj′,k′

ki,i′(s, t)pl(s)pl′(t) dt ds (13)
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with pl denoting the polynomial shape functions and the transported kernel function (2). This is quite
similar to the traditional Galerkin discretization. The main difference is that in the wavelet approach the
elements may appear on different levels due to the multilevel hierarchy of wavelet bases.

Difficulties arise if the domains of integration are very close together relatively to their size. We have to
apply numerical integration carefully in order to keep the number of evaluations of the kernel function at
the quadrature knots moderate and to fulfill the assumptions of Theorem 4.3. In [20, 28, 29] a geometri-
cally graded subdivision is proposed in combination with varying polynomial degrees of approximation
in the integration rules, cf. Fig. 4. This provides that the parametric liftingsγi are analytical. As shown
in [20] the combination of tensor product Gauß-Legendre quadrature rules with such ahp-quadrature
scheme leads to the number of quadrature points satisfying the assumption of Theorem 4.3 withα = 2n.

��
Γi′,j′,k′

Γi,j,k

Figure 4: Adaptive subdivision of the domains of integration.

Since the kernel functionk(x,y) has a singularity on the diagonalx = y, we are confronted with
singular integrals if the domains of integration live on the same level and have any points in common. This
situation appears if the underlying elements are identical or share a common edge or vertex. Such singular
integrals can be treated by the so-calledDuffy-trick [15, 27], which transform the singular integrands onto
analytical ones.

4.5 A-posteriori compression

Let A : H−q(Γ) → Hq(Γ) be a boundary integral operator andAψ
J the associated system matrix

compressed according to Subsection 4.2. If the entries of the compressed system matrixAψ
J have been

computed, we may apply an a-posteriori compression by setting all entries to zero, which are smaller than
a level depending threshold. That way, a matrixÃψ

J is obtained which has less nonzero entries than the

matrixAψ
J . Clearly, this does not accelerate the calculation of the matrix coefficients. But the requirement

to the memory is reduced if the system matrix has to be stored. For instance, this is advantageous for
the coupling of FEM and BEM, cf. [21, 22]. To our experiences this procedure reduces the number of
nonzero coefficients by a factor 2–5.

Theorem 4.6. We define the a-posteriori compression by

[
Ãψ
J

]
(j,k),(j′,k′)

=

 0, if
∣∣[Aψ

J

]
(j,k),(j′,k′)

∣∣ ≤ εj,j′ ,[
Aψ
J

]
(j,k),(j′,k′)

, if
∣∣[Aψ

J

]
(j,k),(j′,k′)

∣∣ > εj,j′ .

Herein, the level dependent thresholdεj,j′ is chosen as in(12)with somed′ > d andδ ∈ (d, d̃+ r) from
(9). Then, the optimal order of convergence(11)of the Galerkin scheme is not compromised.

11
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4.6 Wavelet preconditioning

Let A : Hq(Γ) → H−q(Γ) denote a boundary integral operator of the order2q with q 6= 0. Then, the
corresponding system matrixAψ

J is ill conditioned. In fact, there holdscondl2 Aψ
J ∼ 22J |q|. According

to [6, 28], the wavelet approach offers a simple diagonal preconditioner based on the norm equivalences.

Theorem 4.7. Let the diagonal matrixDr
J defined by[

Dr
J

]
(j,k),(j′,k′)

= 2rjδj,j′δk,k′ , k ∈ ∇j , k′ ∈ ∇j′ , j0 − 1 ≤ j, j′ < J. (14)

Then, ifA : Hq(Γ) → H−q(Γ) denotes a boundary integral operator of the order2q with γ̃ > −q, the
diagonal matrixD2q

J defines a preconditioner toAψ
J , i.e.,

condl2(D−qJ Aψ
JD−qJ ) ∼ 1.

Remark 4.8. The coefficients on the main diagonal ofAψ
J satisfy

(
Aψj,k, ψj,k

)
L2(Γ)

∼ 22qj . Therefore,
the above preconditioning can be replaced by a diagonal scaling. In fact, the diagonal scaling improves
and simplifies the wavelet preconditioning.

As the numerical results in [23] confirm, this preconditioning works well in the two dimensional case.
However, in the three dimensions, the results are not satisfactory. One figures out of Fig. 5 the condition
numbers of the stiffness matrices with respect to the single layer operator on a square discretized by
piecewise linears. We employed different constructions for wavelets with four vanishing momets (span-
ning identical spaces, cf. [20] for details). In spite of the preconditioning, the condition numbers with
respect to the wavelets are not significantly better than with respect to the single-scale basis. We mention
that the situation becomes even worse for operators defined on more complicated geometries.

1 1.5 2 2.5 3 3.5 4 4.5 5

10
1

10
2

10
3

level J

l2 −c
on

di
tio

n

diagonal scaling: single−scale basis
diagonal scaling: tensor product wavelets
diagonal scaling: simplified tensor product wavelets
diagonal scaling: wavelets optimized w.r.t. the supports
modified preconditioner

Figure 5: Thel2-condition numbers with respect to the single layer operator on the unit square and
piecewise linear wavelets with four vanishing moments.

A slight modification of the wavelet preconditioner yields much better results. The simple trick is to
combine the above preconditioner with the mass matrix which yields an appropriate operator based
preconditioning.
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Theorem 4.9. We consider a boundary integral operatorA : Hq(Γ) → H−q(Γ) with corresponding
Galerkin matrixAψ

J . Let Dr
J be defined as in(14) andBψ

J := (ΨJ ,ΨJ)L2(Γ) denote the mass matrix.

Then, ifγ̃ > −q, the matrixC2q
J = Dq

JBψ
JDq

J defines a preconditioner toAψ
J , i.e.,

condl2
((

C2q
J

)−1/2Aψ
J

(
C2q
J

)−1/2
)
∼ 1.

This preconditioner decreases the condition numbers impressively, cf. Fig. 5. Let us remark that the
condition depends on the underlying spaces but not on the chosen wavelet basis. To our experiences the
condition reduces about the factor 10–100 compared to the preconditioner (14).

5 Numerical Results

This section is dedicated to numerical examples in order to confirm our theory. Firstly, we compute a
Dirichlet problem. We use the indirect formulation for the double layer operator which gives a Fred-
holm’s integral equation of the second kind. This is approximated by using piecewise constant wavelets.
Secondly, we solve a Neumann problem employing the indirect formulation for the hypersingular op-
erator. The discretization requires globally continuous piecewise linear wavelets. We mention that both
problems are chosen such that the solutions are known analytically in order to measure the error of
method.

5.1 Dirichlet Problem

For a given functionf ∈ H1/2(Γ) we consider an interior Dirichlet problem, i.e., we seeku ∈ H1(Ω)
such that

∆u = 0 in Ω,
u = f onΓ.

(15)

The domainΩ is described by the set difference of the cube[−1, 1]3 and three cylinders with radii0.5,
cf. Fig. 6. The boundaryΓ is parametrized via48 patches. Choosing the harmonical polynomial

u(x) = 4x2 − 3y2 − z2

and settingf := u|Γ the problem (15) has the unique solutionu.

We employ thedouble layer operator

(Kρ)(x) :=
1

4π

∫
Γ

∂

∂ny

1
‖x− y‖2

ρ(y)dσy, x ∈ Γ, (16)

which yields a Fredholm integral equation of the second kind(
K − 1

2I
)
ρ = f onΓ

for the unknown densityρ. The solutionu of the Dirichlet problem is derived by application of the double
layer operator to this density, i.e.,

u = Kρ in Ω. (17)

13
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Figure 6: The mesh on the surfaceΓ and the evaluation pointsxi of the potential.

The operator on the left hand side of (16) defines an operator of the order 0. We discretize this equation by
piecewise constant wavelets with three vanishing moments which is in accordance with (9). The discrete
solutions are denoted by

u := [u(xi)], uφJ := [(KρφJ)(xi)], uψJ := [(KρψJ )(xi)], (18)

where the evaluation pointsxi are specified in Fig. 6. Herein,uφJ indicates the approximation computed

by the traditional Galerkin scheme whileuψJ stands for the numerical solution of the wavelet Galerkin
scheme.

In Tab. 1 we list the maximum norm of the absolute errors ofuφJ anduψJ . The columns titled by “contr.”
(contraction) contain the ratio of the absolute error obtained on the previous level divided by the present
absolute error. The optimal order of convergence is quadratic which implies a contraction close to 4.
As the results in Tab. 1 confirm, the precisions of the single-scale and the compressed wavelet Galerkin
scheme are rather similar.

unknowns scaling functionsφ(1) waveletsψ(1,3)

J NJ ‖u− uφJ‖∞ contr. ‖u− uψJ ‖∞ contr.
1 192 1.9 — 2.6 —
2 768 3.3e-1 4.0 4.1e-1 6.2
3 3072 5.7e-2 4.4 6.6e-2 6.2
4 12288 (1.4e-2) (4.0) 1.3e-2 5.0
5 49152 (3.6e-3) (4.0) 3.3e-3 4.0

Table 1: The maximum norm of the absolute errors of the discrete potential.

Fig. 7 is concerned with the rates of compression (left) and the computing times (right). We measure the
rates of compression by the ratio (in %) of the number of nonzero matrix coefficients andN2

J . ForNJ =
49152 unknows only0.78% of the matrix coefficients are relevant. After the a-posteriori compression this
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number is even reduced to0.15%. In the plot on the right hand side of Fig. 7 one finds a comparison of the
over-all computing times of the traditional and the fast wavelet discretization. Note that we extrapolated
the computing times of the traditional scheme to the levels 4 and 5. ForNJ = 49152 we obtain the
speed-up factor11.4 in comparison with the single-scale scheme.
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Figure 7: The compression rates and computing times.

5.2 Neumann Problem

For a given functiong ∈ H−1/2(Γ) with
∫

Γ g(x)dσx = 0 we treat a Neumann problem on the domain
Ω, that is, we seeku ∈ H1(Ω) such that

∆u = 0 in Ω,
∂u
∂n = g onΓ.

(19)

The domainΩ under consideration is described as the union of two spheresB1([0, 0,±2]T ) and one
connecting cylinder with the radius 0.5, compare Fig. 8. The boundaryΓ is represented via 14 patches.
Choosing the harmonical function

u(x) =
(a,x− b)
‖x− b‖3

, a = [1, 2, 4]T , b = [1, 0, 0]T , (20)

and settingg := ∂u|Γ
∂n the Neumann problem has the solutionu modulo a constant.

Thehypersingular operatorW is given by

(W)ρ(x) := − 1
4π

∂

∂nx

∫
Γ

∂

∂ny

1
‖x− y‖2

ρ(y)dσy, x ∈ Γ,

and defines an operator of order+1. In order to solve problem (19) we seek the densityρ satisfying the
Fredholm integral equation of the first kind

Wρ = g onΓ. (21)

SinceW is symmetric and positive semidefinite, cf. [17, 24], one restrictsρ by the constraint∫
Γ ρ(x)dσx = 0. We emphasize that the discretization of the hypersingular operator requiresglobally
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Figure 8: The mesh on the surfaceΓ and the evaluation pointsxi of the potential.

continuouspiecewise linear wavelets. According to (9) piecewise linear wavelets have to provide two
vanishing moments.

The densityρ given by the boundary integral equation (21) leads to the solutionu of the Neumann
problem by application of the double layer operator according to (17). The discrete counterparts are
denoted as in (18), where the evaluation pointsxi are specified in Fig. 8.

First, we compare the errors of approximation with respect to the discrete potentials. The order of con-
vergence is cubic (contraction 8) if the density is sufficiently smooth. The results in Tab. 2 suggest even a
higher rate of convergence. But asymptotically one expects an order of convergence less than cubic due
to concave angles between the patches. The wavelet Galerkin scheme achieves the same accuracy as the
traditional Galerkin scheme.

unknowns scaling functionsφ(2) waveletsψ(2,2)

J NJ ‖uJ − uφJ‖∞ contr. ‖uJ − uψJ ‖∞ contr.
1 58 7.1 — 7.6 —
2 226 4.3 1.4 4.2 1.8
3 898 1.2 3.6 1.2 3.5
4 3586 1.9e-1 6.3 1.9e-1 6.2
5 14338 (2.4e-2) (8.0) 1.4e-2 14
6 57346 (3.0e-3) (8.0) 4.8e-4 30

Table 2: The maximum norm of the absolute errors of the discrete potential.

Next, we visualize again the rates of compression and computing times, see Fig. 9. On the left hand side
we plot the number of nonzero coefficients in percent. ForNJ = 57346 unknowns the matrix compres-
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sion yields only 1.37 % and 0.73 % relevant matrix entries after a-priori and a-posteriori compression,
respectively. On the right hand side one figures out the over-all computing times. We extrapolated the
computing times of the traditional scheme to the levels 5 and 6. On level 6 the speed-up of the wavelet
Galerkin scheme is about the factor 11 compared to the traditional scheme.
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Figure 9: The compression rates and computing times.
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